[image: image1.png][image: image95.wmf]Millennia

U.S. Army Force Management Support Agency

Contract Number GS00T99ALD0211 / Task Order Number T0000AJM002

ACT Number A93103448 / FTS Project Number 99198ARA / Contract Line Item Number 0001

Army G3 Integration and Sustainment Support

Force Management System

Detailed Design Document (DDD)

April 5, 2004
[FMS DDD]

Document Control Number: FMS-2087001-271-DDD-v1.11
Prepared for:

The Office of Information Technology Integration

Federal Systems Integration and Management Center

GSA/FEDSIM/TFMGM

6354 Walker Lane, Suite 200

Alexandria, VA 22310

Submitted by:

[image: image108.emf]100 Base-T or Fiber

10 or 100 Base-T

Pentagon OPSLAN

Ft. Belvoir LAN

Ft. Lee (RDD) LAN

Ft. Leavenworth (RDD) LAN

SIPRNET / NIPRNET

Army Portal LDAP

Server

Firewall

Firewall

Firewall

Firewall

Firewall

Computer

Computer

Computer

Computer

Computer

Computer

Server

Server

Server

Server

Minicomputer

Disk array

Client Sites

CTO Data Center

The SIPRNET /

NIPRNET is typically the

bottleneck in IP WAN

based networks —

usually 1/10

th

 to 1/100

th

the speed of the LANs.

SRA International, Inc.

4300 Fair Lakes Court

Fairfax, Virginia 22033

Document Change History

The table below identifies all changes that have been incorporated into updated versions of this FMS Detailed Design Document after the initial document approval. Updates to Attachments that constitute new versions of those documents, e.g., a change in twenty percent (20%) of the document, are also identified here. The change request number (CR #) provides a link to the Configuration Management (CM) history of the change request.

	CR #
	Date
	Version #
	Change Description
	Approved/Date

	
	06/30/02
	1.0
	Initial Release
	

	
	12/31/2003
	1.10
	Update #1
	

	
	04/05/2004
	1.11
	Update #2
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Table of Contents

11.0
Overview

2.0
Software Methodology
4
2.1
Developmental Methodology
4
2.2
Implementation Approach – Web-based, Modular, Rules-based, and Data-driven
5
2.3
FMS Evolutionary Milestones Defined
7
2.4
Requirements Development – the User Review Panel (URP)
8
3.0
Functional Architecture
9
3.1
Identification of FMS Business Areas
9
3.2
Libraries
10
3.2.1
Library Definitions
11
3.3
Components
12
3.4
Interaction of FMS Business Areas
14
3.5
FMS Technical Subsystems
15
3.6
Functional Business Areas Mapped to Subsystems
16
3.7
FMS Subsystems by Increment
19
4.0
Architecture Premises
20
4.1
Definition
20
4.2
Premises
20
4.2.1
Top Down Approach
20
4.2.2
Flexibility
21
4.2.3
Thick Client
22
4.2.4
Minimize Traffic between the Client and the Middle Tier
23
4.2.5
Object Oriented Development
23
4.2.6
Data Driven
24
4.2.7
Stored Procedures vs. Dynamic SQL
24
4.2.8
Web Services
25
5.0
Software/System Architecture
27
5.1
Tiered Architecture
27
5.2
.Net Framework
28
5.2.1
Definition
28
5.2.2
Common Language Runtime
30
5.2.3
Unified Core Classes
30
5.2.4
Web Services
31
5.2.5
Extensible Markup Language (XML)
32
5.3
Client Tier
32
5.3.1
FMS Client Contents
33
5.3.2
Multiple Document Interface (MDI)
34
5.3.3
Business Object Model
35
5.3.3.1
Core
36
5.3.3.2
Back end
38
5.3.3.3
Front end
39
5.3.4
Data Management (net request)
41
5.3.4.1
Get Dataset
41
5.3.4.2
Get XML Document
42
5.3.4.3
System Log
42
5.3.4.4
System Registry
42
5.3.4.5
Middle Tier (Business Services)
43
5.3.5
Web Services
44
5.3.6
Site Services
44
5.3.6.1
Component/Object Broker
45
5.3.6.2
DataBroker
45
5.3.6.3
TransactionBroker
47
5.3.7
Data Consumers
48
5.3.8
System Registry
49
5.4
Datastore Tier
49
5.4.1
Stored Procedures
50
5.4.1.1
Common Stored Procedures
52
5.4.1.2
Subsystem Stored Procedures
53
5.4.2
Data Population
54
5.4.3
Major Entity Types in the System
55
6.0
Sub Systems
56
6.1
Common Code
56
6.1.1
User Interface Infrastructure Code
56
6.1.1.1
Base Navigator
57
6.1.1.2
Multi Navigator
57
6.1.1.3
Base Detail
58
6.1.1.4
Base Sheet
58
6.1.1.5
Base Split Screen
58
6.1.2
Middle Tier Infrastructure
58
6.1.2.1
User Management
58
6.1.3
System Logging
61
6.1.3.1
Logging on the Client
66
6.1.3.2
Logging on the Middle Tier
66
6.1.3.3
Log Levels
67
6.1.4
Basic Show Usage Functionality
68
6.1.4.2
New Functionality – Advanced Show Usage: Definition
70
6.1.4.3
Selection Dialog Windows
71
6.1.4.4
Behaviors for the Selection Dialog Window
72
6.1.4.5
Known Issues with the Selection Dialog Window
73
6.1.4.6
Search Results
74
6.1.4.7
Tab Listings
74
6.1.4.8
Asset Tab
75
6.1.4.9
Enlisted Tab
75
6.1.4.10
Officer Tab
76
6.1.4.11
Warrant Tab
77
6.1.5
Show Support Functionality
78
6.1.5.1
Tool Layout
79
6.1.5.2
Updating attributes of the supporting or supported requirement documents
81
6.1.5.3
Assigning Support to a selected requirement document
81
6.1.5.4
Removing support from a selected requirement document
82
6.1.5.5
Additional Features
82
6.1.6
Show Difference Functionality
82
6.1.6.1
Tool Layout
82
6.1.6.2
Tool Areas
83
6.1.6.3
Selecting Resources for the Tool
84
6.1.6.4
Conventions Used to Show Similarities and Differences
84
6.1.7
Version Control
85
6.1.7.2
Minor Revision Pointer
86
6.1.7.3
Changing Associative Attribute
86
6.1.7.4
Deleting an Associative Change
88
6.1.7.5
Adding an Associative Change
89
6.1.7.6
GetPrefferedVersion
90
6.1.8
Reason For Change Overview
91
6.1.8.1
Functionality
91
6.1.8.2
Reason for Change Dialog Operation
92
6.1.8.3
Create a New RFC group
92
6.1.8.4
Set a New RFC Group
93
6.1.8.5
Accept Changes
93
6.1.8.6
Apply Changes
94
6.1.8.7
Alter Group
95
6.1.8.8
Delete Group
95
6.1.8.9
Test Case Setup
95
6.2
Basis of Issue Class
95
6.2.1
Functional Description
95
6.2.2
Functional Components
96
6.2.2.1
Basis of Issue Management
96
6.2.2.2
Modernization of Operations
96
6.3
Force Requirements
97
6.3.1
Functional Description
97
6.3.2
Functional Components
97
6.3.2.1
Force Requirements Management
97
6.4
Force Authorizations
98
6.4.1
Functional Description
98
6.4.2
Functional Components
98
6.4.2.1
Force Authorizations Management
98
6.4.2.2
Reconciliation
98
6.5
Release Control
99
6.5.1
Functional Description
99
6.6
Change Package Management
99
6.6.1
Functional Components
99
6.6.1.1
Reason for Change
99
6.7
Rules
99
6.7.1
Functional Description
99
6.8
Version Management
100
6.8.1
Functional Description
100
6.9
Database
103
6.9.1
Understanding the Data Model
103
6.9.2
Subject Area Descriptions
107
6.9.3
RD_REQ_DOC
113
6.9.4
RD_ASSOC_CONTAINER PATH
113
6.9.5
RD_ASSOC_DETAIL
114
6.9.6
RD_ASSOC_BILLET
114
6.9.7
RD_ASSOC_BMIL
114
6.9.8
RD_ASSOC_REC_STRUCT
114
6.9.9
Hierarchical vs. Flat View Display
115
6.9.10
Base and Modernization Options
116
6.9.11
Authorization Document
118
6.9.11.1
Navigational Structure
118
6.9.11.2
Authorization Document Cycle Creator
119
6.9.12
Create New Authorization Document Wizard
122
6.9.13
Stored Procedure Architecture
123
7.0
Deployment
129
7.1
Client Versioning
129
8.0
External Interfaces
132
8.1
Introduction
132
8.1.1
Current Interface Situation
132
8.1.2
FMS End-State Cleans Up the Interface Picture
133
8.2
Interface Options
134
8.2.1
Interface Format Options
136
8.2.2
Interface Access Options
137
8.3
Interface Development Approach
141
8.4
External Interface Summary
143
9.0
Hardware Architecture
144
9.1
Hardware Architectural Premises
144
9.2
Proposed Processing Hardware Architecture
146
10.0
Network Constraints
148
11.0
System Security
150

APPENDICES
Appendix A. Acronyms and Abbreviations
A-1

Table of Figures

1Figure 1‑1 Legacy Processing Cycles

4Figure 2‑1 Evolutionary or Iterative Methodology

7Figure 2‑2 FMS Software Layers

8Figure 2‑3 URP Organization and Responsibilities

9Figure 3‑1 FMS Business Areas

10Figure 3‑2 Business Area Context Diagram

11Figure 3‑3 Library Data Flow

15Figure 3‑4 Business Area Interaction Diagram

16Figure 3‑5 FMS Subsystems

19Figure 3‑6 Subsystems by Software Increment

21Figure 4‑1 Layers in System Architecture

22Figure 4‑2 Architectural Balances

28Figure 5‑1 Tiered Architecture

29Figure 5‑2 .Net Framework

32Figure 5‑3 XML Transfer through Services.Net

34Figure 5‑4 FMS Client Tier

35Figure 5‑5 FMS MDI Windows

37Figure 5‑6 Class Diagram for the Core Functionality

38Figure 5‑7 Class Diagram for the Back End Functionality

40Figure 5‑8 Class Diagram for the Front End Functionality

43Figure 5‑9 Middle Tier Services

44Figure 5‑10 Sample Data Flow

45Figure 5‑11 ObjectBroker Registry Hive

46Figure 5‑12 FMS Registry Hive

46Figure 5‑13 Input Argument Resolution

47Figure 5‑14 Requests Requiring User Id

48Figure 5‑15 TransactionBroker Registry Hive

49Figure 5‑16 FMS Database Tier

51Figure 5‑17 Database Component Layout

51Figure 5‑18 FMS Stored Procedures

53Figure 5‑19 Class Inventory Management

55Figure 5‑20 Data Population

55Figure 5‑21 Major Database Entities

56Figure 6‑1 FMS Directory Interface

57Figure 6‑2 FMS Directory Interface (cont.)

59Figure 6‑3 User Authentication Source

59Figure 6‑4 Site Services Authentication

60Figure 6‑5 Roles and Permissions

61Figure 6‑6 Content Permissions

61Figure 6‑7 Windows Event Viewer

62Figure 6‑8 Information Event

63Figure 6‑9 Warning Event

64Figure 6‑10 Error Event

64Figure 6‑11 Event View Action Menu

65Figure 6‑12 Event Viewer Filter Dialog

66Figure 6‑13 Event Viewer Log Size

68Figure 6‑14 Selected Notes

69Figure 6‑15 New Item Selection

69Figure 6‑16 Synchronized Results

70Figure 6‑17 Advanced Show Usage - Collapsed Window

71Figure 6‑18 Advanced Show Usage - Expanded Window

72Figure 6‑19 Selection Dialog Windows

75Figure 6‑20 Content Tab

75Figure 6‑21 Asset Tab

76Figure 6‑22 Enlisted Tab

77Figure 6‑23 Officer Tab

78Figure 6‑24 Warrant Tab

79Figure 6‑25 Show Support Docking Control

80Figure 6‑26 Support Type Selection Dialog

81Figure 6‑27 Support Level Update

83Figure 6‑28 Show Difference Tool Layout

85Figure 6‑29 Change Packet Changes

86Figure 6‑30 Changing the Nodal Attribute

86Figure 6‑31 Minor Revision Pointer in the Change Caption

87Figure 6‑32 Changing Associative Attribute

87Figure 6‑33 Change Package Pointers

88Figure 6‑34 Delete Associative Package

88Figure 6‑35 Change Package Delete Pointers

89Figure 6‑36 Adding an Associative Package

89Figure 6‑37 Add Associative Changes Pointers

91Figure 6‑38 Get Preferred Version

92Figure 6‑39 Create Group Tab

94Figure 6‑40 Accept All Tool Bar Button

95Figure 6‑41 Apply Changes Confirmation Message

100Figure 6‑42 Version Management Diagram

101Figure 6‑43 Middle and Database Tiers

106Figure 6‑44 Associative Table

109Figure 6‑45 BOI Tree

111Figure 6‑46 BILLETS Tree

116Figure 6‑47 Requirement Document Tree

118Figure 6‑48 The date range toolbar

119Figure 6‑49 Authorization Document Navigation View

120Figure 6‑50 Authorization Document Detail View

121Figure 6‑51 Document Cycle Creator Functionality

122Figure 6‑52 Document Cycle Creator

124Figure 6‑53 Database Component Layout

129Figure 7‑1 Initial Operating Capability FMS Versions

130Figure 7‑2 FMS Updated State

132Figure 8‑1 Today's Interface Situation

134Figure 8‑2 FMS End-State Interfaces

135Figure 8‑3 Positional and Comma Delimited Transaction Formats

136Figure 8‑4 Interface Format Options Available to FMS End-State

139Figure 8‑5 FMS Interface Services

140Figure 8‑6 Staging Tables

141Figure 8‑7 Interface Development

146Figure 9‑1 Round Robin Network Load Balancing

147Figure 9‑2 Notional Hardware Architecture

148Figure 10‑1 IP WAN Based Network

Table of Tables

3Table 1‑1 FM Functional Structure

18Table 3‑1 Business Area & Subsystem Cross Reference

31Table 5‑1 Key .Net Classes in FMS

41Table 5‑2 Net Request Classes

48Table 5‑3 TransAction Broker Key Names

52Table 5‑4 Work Product States

61Table 6‑1 System Logging Event Types

84Table 6‑2 Tool Area Functions

85Table 6‑3 Tool Color Codes

104Table 6‑4 Super Type Key Columns

106Table 6‑5 Parent-Child Resource Types Example

107Table 6‑6 Resource Table Name Examples

107Table 6‑7 Resource Associative Table

108Table 6‑8 END_STATE Data Model

126Table 6‑9 Version Control Key Aspects

127Table 6‑10 Change Package Table

142Table 8‑1 Interface Requiquirement Identification Considerations

145Table 9‑1 System "ilities"

1.0 Overview

The Force Management System (FMS) is being developed for the U.S. Army Deputy Chief of Staff, G-3; Force Management Directorate (FM) and the U. S. Army Force Management Support Agency (USAFMSA). In this document the acronym FM will be used to refer to both, unless otherwise specified. FMS End-State will replace four aging, stovepipe software systems that are currently used to support FM mission. While the details of the existing software systems are not important to this document, a brief description of the functional challenges associated with these systems and the organizational structure they support is fundamental to understanding the reasons behind the design of a new system aimed at solving current problems through the integration of data and processes.

[image: image2.wmf]22

INTERNATIONAL, INC.

BES

Ship

FY 02

-

03

FM Current Operations

-

Major

Cyclical Events (FY 00)

-

Serial Build

Manpower

Allocation

JAN

FEB

MAR

APR

MAY

JUN

JUL

AUG

SEP

OCT

NOV

DEC

Force

Accounting

Force

Authorizations

FY 02

COMMAND

PLAN

AUTS

MFORCE

Ship

FY 00

-

07

FY 03

DRAFT AUTH

DOCUMENTS

SHIP

FY 00

-

02

DOCS

AUTS

FY 02

DRAFT AUTHORIZATION

DOCUMENTS

PRES

BUD

Ship

FY 01

POM

Ship

FY 02

-

07

Force

Modernization

SHIP

FY 03

-

07

DOCS

Force

Requirements

FY 04 BUILD BOIP/TOE

SHIP

FY 03

DOCS

FY 03 BUILD BOIP/TOE DOCUMENTS

FY 03 MONTHLY AOI/DIWG/DA APPROVAL

FY 04 MONTHLY AOI/DIWG/DA

FY 02

COMMAND

PLAN

POM

BUILD

PRESIDENTS

BUDGET

BUILD

BES

BUILD

FY 02

COMMAND PLAN

BUILD

FY 03

COMMAND PLAN

BUILD

BUILD FY

03

-

07

SACS/AAO

Figure 1‑1 Legacy Processing Cycles

FM has a number of responsibilities to the Army. They include management of the Army Force Structure through Total Army Analysis (TAA), PPBES, Command Plan and other processes; Integration of Doctrine, Training, Leadership, Organization, Material, Personnel and Facilities (DTLOM-PF) solutions into Army organizations; and document and account for requirements and authorizations. Figure 1-1 shows the complex development cycles within FM –work done by four different systems, in serial fashion, during a typical fiscal year (in this case FY00). The information within the systems is usually out of synch and out of date by the time the final product is delivered. FM serves five essential functions:

	•
Force Requirements

	Develop doctrinally based TOE using information from the Training and Doctrine Command (TRADOC), which dictates the personnel and equipment necessary for a given force.

	•
Force Authorization
	Reconcile the personnel and equipment for an existing force with new doctrine within available Army resources.

	•
Force Accounting
	Provide projected budgeting for military and civilian personnel as dictated by doctrine.

	•
Manpower Allocation
	Provide projected budgeting for military personnel and organizations as dictated by doctrine.

	•
Force Builder
	Provide force projections 7-10 years into the future.

Table 1‑1 FM Functional Structure

This document will describe a system architecture that binds disparate business areas and provides an integrated workflow, data, and process oriented system.

This design document is a living document. At the beginning of each development increment it will be updated to reflect the design of the next increment. See Section 2, Software Methodology, for a discussion of the software lifecycle methodology SRA’s FMS Development Team will use in the development of the FMS system.

Note also that some sections are intentionally left blank. These sections are placeholders and will be detailed in later releases of this document as the details of those sections are worked out.

2.0 Software Methodology

2.1 Developmental Methodology

The evolutionary model is used when all requirements for the system cannot be fully defined at the start. The system is developed as a series of builds or versions (see Figure 2-1), including provisions for the evolutionary addition of functionality and changes, as requirements are further defined. Software engineers develop increasingly more complete versions of the software, with each iteration serving as the basis for the next.

The evolutionary model is based on the following simple principle:

· Deliver something to a real end-user.

· Measure the added value to the user in all critical dimensions.

· Adjust both requirements and design objectives based on user’s feedback.

[image: image3.wmf]

Figure 2‑1 Evolutionary or Iterative Methodology

The evolutionary model is particularly suited to situations where the general scope of the program is known, but only a basic core of functional requirements can be defined, or detailed system requirements are very difficult to quantify or articulate. In the case of FMS the Operational Requirements Document defines at a high level the basic functional requirements but they are not in sufficient detail to build the system. Consequently, software requirements analysis is an important part of each iteration. The evolutionary life cycle is also a risk reduction strategy for systems where future requirements changes are anticipated. This is particularly true for FM, where the requirements and rules for developing and documenting force structure are expected to change significantly as the Army transforms from a force primarily structured to deal with conventional warfare to one that is strategically responsive and dominant across the full spectrum of military operations.

The evolutionary model has a number of advantages that are important to FMS:

· The evolutionary model facilitates the creation of a large, complex software product, even if all of the requirements to be satisfied by that product will not or cannot be defined at the beginning.

· Partial capabilities are delivered to the user for use and evaluation at an intermediate stage of the development process. The user can put this intermediate version into operation and gain the benefits of its capabilities before the entire software product is completed.

· The developer is specifically charged with listening to user reactions, early and often. The user can play a direct role in the development process. Understanding of the requirements for later builds becomes clearer based on the user’s ability to gain a working knowledge of earlier builds. It enables the developer and user to understand and react to risks at each evolutionary level.

However, there are some disadvantages as well.

· The evolutionary model has potentially longer product cycles to achieve full system functionality.

· Requirements analysis of the evolutionary model is fragmented.

· The model involves the risk of undoing what has already been done. Future requirements may not be supportable without completely redesigning or rebuilding the software.

· It is based on the often unrealistic assumption that the user’s operational system will be flexible enough to accommodate unplanned evolution paths.

· The cost and schedule of the complete development effort are difficult to estimate and plan at the start of the project. This difficulty results from the lack of complete requirements knowledge and the resulting uncertainties regarding the content and capabilities of later builds.

2.2 Implementation Approach – Web-based, Modular, Rules-based, and Data-driven

SRA’s FMS Development Team will mitigate the risks associated with the evolutionary methodology by using Microsoft’s .Net framework to build a highly modular, data-driven design, which will be described in detail in Section 5: Software/System Architecture. Microsoft’s .Net technology also allows a web-enabled application to be built that is not limited by the current, technical constraints of a browser. It allows a Windows-based client to be built for information producers that can take advantage of the rich graphical environment, and the local processing power of the PC while communicating with the web-server and database using standard web communications protocols such as XML and Simple Objective Access Protocol (SOAP).

Information producers are those users who are charged with creating FM documentation. For information consumers, those who review or reference FM documentation, FM information will be available via a standard browser interface. The difference in the interfaces is because the information producers need a richer toolset to do their jobs efficiently. This approach allows us to meet the needs of both types of user and support the Army’s vision/requirement for web-enabled applications. In support of the Army’s Knowledge On-line (AKO) program FMS will be accessible from the AKO and AKO-Secure web sites and will be hosted in the Deputy Chief of Staff, G-6, Chief Technology Center (CTO).

Additionally, by using the .Net framework, it can also address the risk of the lengthy product cycles by taking advantage of all the tools Microsoft has provided to support the distributed processing architecture. By building in flexibility using modern tools designed to support rapid, modular, web-enabled development the FMS Development Team can realize the advantages of the evolutionary methodology while mitigating the associated risks.

By using a modular, data-driven architecture there is tremendous flexibility designed into the system. Additionally, a rules engine will be built that will provide the ability to add or change business rules without rebuilding the system. This approach not only increases system flexibility overall but also allows FM to make near-term changes without having to have modify the FMS software. This approach allows the development of the system in an environment where the supported organization and the requirements are in a state of flux. The risk associated with this increased flexibility is performance – there is a lot of processing overhead associated with “flexibility.” The FMS Development Team will model expected system performance to identify early the areas of greatest performance risk so that they can be dealt with prior to fielding.

The FMS architecture will be built in layers as shown in Figure 2-2 below. At the core of FMS is a relational database containing structures that match FM’s business needs, entity relationships that match the real world cardinality of the organization, and the necessary relational constraints that ensure data integrity. More information on the FMS database is available in the FMS Detailed Database Design Description. Next is the Remote Machine Application Programmer’s Interface (API), which provides the tools necessary to manage and address distributed processes. The Application Common API layer provides a communication mechanism between components and platforms for the system and a basis from which to build on for each increment. The Business Areas layer divides up the requirements into nine Business Areas. Finally, the Business Rules layer contains and runs user defined business processing rules, which are user modifiable.

[image: image4.png]
Figure 2‑2 FMS Software Layers

2.3 FMS Evolutionary Milestones Defined

In FMS the evolutionary iterations are broken down into four iterations, which will be called increments. Increment 0 is the development of the system architecture. The system architecture includes common modules that support the development of application increments 1-3. Common modules allow us to build a system that accomplishes common tasks in the same way throughout the system. Common modules also include common User Interface (UI) widgets (widgets is a technical term for the individual components of a UI such as menu bar widget, spreadsheet widget, scroll widget, etc.). The common widgets allow us to develop a UI that has a common look and feel throughout the application. By using common modules SRA’s FMS Development Team can reduce the development time while increasing reliability and maintainability by taking advantage of reusability.

Increment 1 is the development of the Force Requirements Documentation functions. Increment 2 follows with the development of the Force Authorizations Documentation functions. Finally, Increment 3 completes the system with the development of the Manpower Allocation and Force Accounting functions. The system will be deployed in two phases. Increments 1 and 2 comprise Initial Operating Capability (IOC) and Increment 3 provides Final Operating Capability (FOC).

Even though Increment 1 will not be deployed for operational purposes, it will be available, in a controlled environment, for the User Review Panel (URP) members to evaluate. In fact, the URP members will have access to sub-increment builds and through this access, be able to provide valuable feedback to the developers on the usability of the system.

2.4 Requirements Development – the User Review Panel (URP)

An integral part of our development approach is the use of a URP. The URP includes, but is not limited to, Subject Matter Experts (SME) and user representatives from FM, the Army Staff and Secretariat, Major Commands, and the Army Reserve and National Guard Bureau. Their purpose is to work with the FMS software developers to:

· Develop and/or validate requirements

· Provide guidance on UI development

· Evaluate system usability as it is being developed

· Document process and policy changes necessary to take advantage of the new system (business process improvement opportunities)

· Report back to the user community on the progress of the new system and coordinate any process and/or policy decisions made that will affect them.

Table 2-1 lays out the URP’s organization and responsibilities.

	USER REVIEW PANEL RESPONSIBILITIES

	CHAIR

Chairs URP Meetings

Facilitates decision making

Presents FMS Status report (along with the SRA Team) to the URP at Quarterly Reviews

	PRIMARY and SECONDARY MEMBERS

Provide FMS managers and developers with critical comments, assessments, and recommendations

Suggest, assess, and prioritize improvements to FMS functionality

Participate in regularly scheduled meetings and reviews (Primary Members)

Participate in Quarterly Reviews (Primary and Secondary Members)

Review User Documentation

	SECRETARIAT

Identifies user participation and establishes the URP

Participates in regularly scheduled meetings and reviews

Provides daily as required coordination on requirements issues

Serves as URP Primary Member

	USER LIAISON

Assists and supports URP members.

Represents functional requirements to the developer team on a day-to-day basis.

	RECORDER

Records and maintains records of URP decisions, action items, and other items of significance as directed by the URP Chair.

Figure 2‑3 URP Organization and Responsibilities

3.0 Functional Architecture

3.1 Identification of FMS Business Areas

Figure 3-1 identifies the nine FMS Business Areas. These business areas are grouped into two basic functions; libraries and components. Libraries are identified as data resources that are linked into FMS constructed products. Information from external sources is loaded into libraries for controlled ingestion into FMS. Components are business areas that represent primary internal product development within the FMS system. These include items such as requirements and authorization documents, which are created to help FM organize and manage the force.

[image: image5.wmf]Application Control

Issue

Release Control

Force Scenario

Unit Scenario

Authorization Document

Requirement Document

Basis of Issue (BOI)

External Library Data

F

M

S

B

U

S

I

N

E

S

S

A

R

E

A

S

Business Area

Components

Libraries

Figure 3‑1 FMS Business Areas

Figure 3-2 provides the context diagram for the Business Areas. The Application Control Business Area provides the overarching capabilities for the system. Examples of items in this area are application specific windows and menus. Libraries represent building blocks of data in FMS. The Libraries contain data from external systems that provide information to users allowing them to relate external variables to Army force management. The FMS Business Modules represent the products developed by FMS users to help them manage the Army force. This area is divided into two major categories; common business and product components. The Release Control and Issue Management components provide information baseline support and hierarchical “reasons for change” for each change record established in the FMS data. The product modules contain data developed by users to accomplish specific jobs and functions with in force management.

[image: image6.wmf]Application Control

Common Components

Libraries

Business Components

Release Control

Issue Management

Common Business Components

Product Components

Org Strength

Library

Unit

Reference

Library

Billet Military

Library

Fund Group

Library

Rule Engine

Library

Asset

Library

Billet

Contractor

Library

Billet Civilian

Library

Authorization

Document

Basis Of

Issue

Unit

Scenario

Force

Scenario

Requirement

Document

Figure 3‑2 Business Area Context Diagram

3.2 Libraries

Figure 3-3 depicts the generic data flow of external data into FMS. Data received from external sources may be valid or invalid. Before loading the data into the core FMS database tables, FM requires that a functional administrator view the data and ensure that it is valid. Data can be invalid for a number of reasons including but not limited to: data that is out of date; data that contains invalid values; and data that is duplicated. By enforcing a validation check by an expert user, FM ensures that data published for use within FM is very accurate. Functional experts in one of three domains; Unit, Account, and Requirements, accomplish the validation. Unit experts validate Organizational Strength and Unit Reference Libraries. Account experts validate the Fund Group Library. Requirements experts validate Asset, Military Billet, Civilian Billet and Contractor Billet.

[image: image7.wmf]E

X

T

E

R

N

A

L

D

A

T

A

FMS Data Ingestion

Library

Staging Tables

Functional Admin

UI

FMS Internal

Working Data

FMS Application

UI

APPROVE/

DISAPPROVE

FMS System

Figure 3‑3 Library Data Flow

3.2.1 Library Definitions

The definitions of each library are listed in abbreviated format below. Complete information on the specifics of each entity is described in Memorandum of Agreements (MOAs) between FM and data source organizations.

Organizational Strength Library

Control library for Force Scenario organizational strength requirements including:

· Organizational Strength Requirements from Concepts Analysis Agency

· M&RA Force Controls

· Other Force Controls

Unit Reference Library

Control library for Unit Scenario unit reference requirements including:

· SORTS and Military Actuals data

· DAMPL, AOP and other classified data

Fund Group Library

· Control library for Program Elements (PE), Army Management Structure Codes (AMSCO) and Management Decision Packages (MDEP)

· Fed from DCSOPS, Programs, Analysis and Evaluation (PA&E)

· Must manage data profiles to support PE, AMSCO & MDEP Rolls and Splits

Asset Library

· Control library for SB 700-20 LIN Asset Data

· Control Library for the BOIP Feeder Data (BOIPFD)

· Fed from US Army Logistics and Support Agency (LOGSA)

· Library must manage data profiles to support LIN Conversions

Billet Military Library

· Control library for POSCEDIT Data

· Fed from US Army Personnel Command (PERSCOM)

· Library must manage MPC/AOC/MOS/GRADE/ASI/SQI/SDT and their valid combinations

· Library must manage data profiles to support MPC/AOC/MOS/GRADE/

· ASI/SQI/SDT & combo conversions

Billet Civilian Library

· Control library for POSCEDIT Data

· Fed from US Army Personnel Command (PERSCOM)

· Library must manage Job Series/Grade/SDT and their valid combinations

· Library must manage data profiles to support Job Series/Grade/SDT & combo conversions

Billet Contractor Library

· Control library for Unit Contractor Data

· Fed from ASA Manpower & Reserve Affairs (ASAM&RA) for Controls

· Fed from individual units for actuals data

Rule Engine Library

· Enables rapid development of auto-generated Authorization Documents

· Enables rapid development of Requirements Documents

· Ensures repeatable and accurate Documentation

· Quantifies business rules for use by less experienced Documenters

· Examples include Standards of Grade, MARC, OPFAC etc.

3.3 Components

Descriptions of the high level functionality of each business area are listed in abbreviated format below. Complete information on the specifics of each business area is included in the FMS Requirements Document.

Application Control Module

· User Login, Roles & Permissions

· AKO Authentication

· Default CU/Lock Point Settings

· Broadcast Messages

· Application Upgrades/Version Info

· System Lookup Code Updates

· Classified/Unclassified Synchronization

· Database Backups

· System Documentation/Help

· User Report & Query Bins

Release Control Module

· FMS Consolidation Updates – Consolidation Updates indicate reconciled baselines for all FMS products

· Module Lock Points - Lock Points provide the ability for individual FMS modules to manage internal baselines

· Lock Point Associations – These associations can be used to make internal baseline data available for use to other FMS modules

Issue Module

· Multi-tiered “Reasons for Change” across all FMS business modules

· FMS “Reasons for Change” associated with any or all change records

Force Scenario Module

· Supports multiple Force Scenarios for potential “What-If” drills

· Force Scenario Section I Narratives and Comments

· Identifies Organizational Strength Requirements by Standard Requirements

Code (SRC)
· Maintains Force Controls including:

· M&RA Controls

· Branch Controls

· Personnel and Equipment Controls

· Other Controls (European Caps/PPP/Etc).

Unit Scenario Module

· Supports multiple Unit Scenarios across multiple Force Scenarios to support potential “What If” drills at the unit level

· Unit Scenario Section I: Narratives & Comments

· Establishes Unit Header for all units

· Establishes Unit Variant Segments

· Supports Command/Support Structure/SRC associations for a give unit

· Supports Unit Location

· Supports Unit Activation/Inactivation/Reflagging

· Supports Unit Controls (Force/Budget)

· Supports Unit Equipment Delivery Schedules

Authorization Document Module

· Supports Authorization Documents into out-years

· Enforces Authorization Documents built on Requirements Templates (Requirements/Authorization Document)

· Enables Basis Of Issue Plan’s (BOIP)applied by the Unit Scenario Equipment Delivery Schedules

· Authorization Document Header, Section I and II

· Analysis tools to support data analysis

· Supports Workflow Data Change, Allocation and Definition Rules

· Supports construction of TOE/TDA/Aug TDA/APS/Joint Docs

Requirements Document Module

· Supports TOE/TDA/Aug TDA/APS/Joint Templates & Exceptions/Deviations

· Supports simultaneous Traditional, BOIP/MOD Option and Full Rule Engine Build processes

· Requirements Document Header, Section I and II

· Analysis tools to support data analysis

· Supports Traditional or Hierarchical Templates

· Supports Workflow Data Change, Allocation and Definition Rules

· Supports construction of TOE/TDA/Aug TDA/APS/Joint Docs

Basis of Issue (BOI) Module

· Supports BOIPs, Incremental Change Packages (ICP)’s, Modernization Options and Organizational Elements

· Provides Class structure for managing above BOI Information

· Modernization Option, combined with FMS Rule Engine Module, allows for auto-generated Authorization Documents

· Modernization Option also identifies valid UIC Equipment Modernization for organization types.

3.4 Interaction of FMS Business Areas

The FMS Business Area interaction diagram, shown in Figure 3-4, identifies the interdependencies between the business areas and defines the workflow processes within the system.

[image: image8.wmf]External

File

Library

Application Control Module

Release Control Module

Issue Module

Asset

Library

Billet Civilian

Library

Billet

Contractor

Library

Billet Military

Library

Fund Group

Library

Org Strength

Library

Rule Engine

Library

Unit

Reference

Library

Authorization

Document

Module

Basis Of

Issue

Module

Force

Scenario

Module

Requirement

Document

Module

Unit

Scenario

Module

MFORCE

/PBG

AUTHS

/SACS

Figure 3‑4 Business Area Interaction Diagram

The External File Library accepts externally driven data required for use by FMS and feeds change records into the libraries as shown by the blue arrows in the figure. The type of external data being received will determine which libraries will be targeted for data feed.

Each library supports the components as shown. The arrows and braces indicate the dependencies between Libraries and components. For example, in the case of the rules engine library, all FMS components are supported.

The interaction between business components is shown on the right side of the picture. Notice the double-headed arrow between the Unit Scenario and the Authorization Document components. This represents the intersection of the Force and Unit Controls Allocation process and the detailed Authorization process.

The Application Control, Release Control and Issue components are common and are represented by the global function containers as shown.

Finally, on the far right of the diagram, the major product releases are depicted. These are the outputs of the FM workflow process and are distributed to other Army organizations.

3.5 FMS Technical Subsystems

Figure 3-5 shows the subsystems that make up FMS. FMS subsystems can be broken down into common modules and business modules. The left side of Figure 3-5, labeled Common Modules, shows subsystems that support more than one business subsystem. The business subsystems are depicted in the right half of the diagram below; (Data Population, Force Requirements etc.) Business subsystems implement the majority of the functionality specific to FMS.

[image: image9.wmf]Common Modules

Class

Library

System

Security

System

Rules

Engine

Issue

Release

Control

Business

Rule

Engine

Application

Infra

Report

Infra

Data Population

Org

Strength

Fund

Group

Asset

Military

Billet

Civilian

Billet

Cont

Billet

Force Requirements

Force

Requirements

Management

Basis of Issue

Management

Modernization

Options

Management

Force Scenario

Organizational

Requirements

Manpower and

Reserve

Affairs (M&RA)

Other Force

Controls

Unit Scenario

Unit

Header

Unit Variant

Segments

Unit Force

Controls

Unit Budget

Controls

Unit

Force Authorization

Force

Authorizations

Management

Reconciliation

Figure 3‑5 FMS Subsystems

3.6 Functional Business Areas Mapped to Subsystems

Table 3-1 shows a mapping between the business areas, depicted in Figure 3-1, and the technical subsystems, depicted in Figure 3-5, that support them. The first column in the table, ‘Bus Area Num’ indicates the number of the business area. Note, there were nine business areas identified in Section 3.1. The Subsystem components listed in the third column identify the major subcomponents of a business area. Only one business area, External Libraries, has subcomponents as depicted in Figure 3-2. The fourth and fifth columns represent the technical subsystems and the major components within the subsystems. They are represented in Figure 3-5 by rectangles and the circles within the rectangles. This cross-reference ensures that each business area is covered by at least one technical subsystem. This mapping will provide the foundation for associating requirements to software design.

	Bus

Area

Num
	Business Area
	Business Area Subcomponent
	Subsystem
	Subsystem Component

	1
	Application Control
	
	Common
	· Application Infra

	2
	Issue
	
	Common
	· Issue

	3
	Release Control
	
	Common
	· Release Control

	4
	Force Scenario
	
	Force Scenario
	· Organizational Requirements

· Manpower and Reserve Affairs (M&RA)

· Other Force Controls

	5
	Unit Scenario
	
	Unit Scenario
	· Unit Header

· Unit Variant Segments

· Unit Force Controls

· Unit Budget Controls

	6
	Authorization Document
	
	Force Authorization
	· Force Authorization Management

· Reconciliation

	7
	Requirement Document
	
	Force Requirements
	· Force Requirements Management

	8
	Basis of Issue
	
	Force Requirements
	· Basis of Issue Management

· Modernization Options Management

	Bus

Area

Num
	Business Area
	Business Area Subcomponent
	Subsystem
	Subsystem

Component

	9
	External Libraries
	Organizational Strength
	· Common

· Data Population

· Force Scenario

· Force Requirements

· Force Authorization
	· Class Library

· Organizational Strength

	9
	External Libraries
	Unit Reference
	· Common

· Data Population

· Force Scenario

· Force Requirements

· Force Authorization
	· Class Library

· Unit Reference

	9
	External Libraries
	Fund Group
	· Common

· Data Population

· Force Scenario

· Force Requirements

· Force Authorization
	· Class Library

· Fund Group

	9
	External Libraries
	Billet Military
	· Common

· Data Population

· Force Scenario

· Force Requirements

· Force Authorization
	· Class Library

· Military Billet

	9
	External Libraries
	Billet Civilian
	· Common

· Data Population

· Force Scenario

· Force Requirements

· Force Authorization
	· Class Library

· Civilian Billet

	9
	External Libraries
	Billet Contractor
	· Common

· Data Population

· Force Scenario

· Force Requirements

· Force Authorization
	· Class Library

· Contractor Billet

	9
	External Libraries
	Rule Engine
	Common
	· Business Rules Engine

· System Rules Engine

	Bus

Area

Num
	Business Area
	Business Area Subcomponent
	Subsystem
	Subsystem

Component

	1 – 9
	All
	
	Common
	System Security

	1 – 9
	All
	
	Common
	· System Rules Engine

· System Security

· Business Rule Engine

Table 3‑1 Business Area & Subsystem Cross Reference

3.7 FMS Subsystems by Increment

Figure 3-6 shows the subsystems and the increments they will be completed in. Some functionality will be developed for key subsystems in early increments eventhough the subsystem is not scheduled for completion until a later increment. Subsystems that span multiple increments have portions of functionality that other business modules have dependencies on in the earlier increment.

[image: image10.wmf]Common Modules

Class

Library

System

Rules

Engine

Issue

Library

Release

Control

module

Application

Infra

Report

Infra

Data Population

Org

Strength

Fund

Group

Asset

Military

Billet

Civilian

Billet

Cont

Billet

Force Requirements

Force

Requirements

Management

Basis of Issue

Management

Modernization

Options

Management

Force Authorization

Force

Authorizations

Management

Reconciliation

Module

Force Scenario

Organizational

Requirements

Manpower and

Reserve

Affairs (M&RA)

Other Force

Controls

Unit Scenario

Unit Force

Controls

Unit Budget

Controls

Business

Rules

Unit

Header

Unit Variant

Segments

System

Security

Legend: Increment 1:

text

Increment 2:

text

Increment 3:

text

Unit

Figure 3‑6 Subsystems by Software Increment

4.0 Architecture Premises

4.1 Definition

Architecture is the organizational structure of a system. Architecture can be recursively decomposed into parts that interact through interfaces, relationships that connect parts, and constraints for assembling parts. Parts that interact through interfaces include classes, components and subsystems. Important properties include:
· It is at a high-enough level of abstraction that the system can be viewed as a whole.

· The structure must support the functionality required of the system. Thus, the dynamic behavior of the system must be taken into account when designing the architecture.

· The structure--or architecture--must conform to the system qualities (also known as non-functional requirements). These likely include performance, security and reliability requirements associated with current functionality, as well as flexibility or extensibility requirements associated with accommodating future functionality at a reasonable cost of change. These requirements may conflict, and tradeoffs among alternatives are an essential part of designing architecture.

· At the architectural level, all implementation details are hidden.

Software architecture is commonly defined in terms of components and connectors. Components are identified and assigned responsibilities that client components interact with through "contracted" interfaces. Component interconnections specify communication and control mechanisms, and support all component interactions needed to accomplish system behavior.

System architecture is usually based on a set of premises that address the purpose of the system. This section will discuss the key propositions upon which FMS is built.

4.2 Premises

The rest of this section will present the premises upon which the FMS architecture is based.

4.2.1 Top Down Approach

The architecture of FMS was created following a top-down design approach. At first, the system components and behaviors were identified at a high level of abstraction. The premise is that it is best to describe the architecture in terms of layers, tiers and services. Layers are abstractions of the underlying implementation of a system, where each layer hides concrete details of the layer below it. Notice in Figure 4 1 Layers in System Architecture, that the operating system hides details of the hardware implementation.

[image: image11.wmf] Application

 Virtual Platform

 Upper Platform

 Lower Platform

Operating System &

Runtime

Operating Environment:

IIS, MTS

APIs, Interface

Specifications

Subsystems & Components

System

Layers

Figure 4‑1 Layers in System Architecture

Tiers are logical (not physical) subdivisions of a system that are differentiated by roles and responsibilities. For example, the client tier contains the responsibility of rendering the display on the client.

Finally, services are encapsulated functionalities that serve multiple components, hide the details of implementations, and provide APIs to allow use of services. For example, the Site Services Web Service provides an interface to a common core of methods that perform basic system functions.

4.2.2 Flexibility

Flexibility is the ability to change the architecture to meet new requirements in a cost-efficient manner. A flexible architecture has many dimensions; how capable is the architecture at incorporating new business rules, or how easy is it to redistribute code to improve performance as more information is gathered on system use.

When looking at flexibility, it is also necessary to address performance and maintainability. Often the more flexible a system is, the more difficult it is to maintain and potentially the slower it is. In FMS this principle can be applied to both business and system rules. The rules capability is highly flexible, but there is a price to this flexibility. A user that develops rules is given the opportunity to build a rule that is very inefficient and performs very slowly. There is nothing in the architecture to prevent this from happening. So, the flexibility of the rules engine can impact the performance of the system. Additionally, it may become difficult to manage the business rules. As more and more rules are developed, it may be difficult to determine the impact that a change to a piece of data might have. Consider Figure 4 2 Architectural Balances. This figure depicts the tight dependencies between flexibility, performance and maintainability. To properly balance architecture, the system architect must balance the degree of each of these capabilities in the system. FMS is highly flexible, as indicated by the number ‘70’ on the flexibility scale. This in turn degrades performance, rated a ‘30’, and maintainability, rated a ‘50’. The system architect must continue to evaluate each of these measures as code is developed which can help benchmark these scales.

 [image: image12.wmf]Maintainability

Performance

Flexibility

Not Flexible

0

Highly Flexible

100

Highly Performant

100

Not Performant

0

Not Maintainable

0

Very Maintainable

100

70

50

30

Figure 4‑2 Architectural Balances

A changeable topology allows you to quickly modify a distributed architecture to improve its availability and performance. In FMS, this can be accomplished by distributing the web methods across different web services and distribute the web services across different machines in the middle tier. Moving a web method to a new web service is a relatively simple process and could be done if performance benchmarks indicate that such a move would increase middle tier throughput.

FMS also provides a great deal of flexibility by building a lot of the business logic into configurable database tables. This concept is discussed in 4.2.6 Data Driven below.

4.2.3 Thick Client

The FMS application is a web-based client application. This approach combines the best of a client server and browser based architectures. Native client applications provide the end user with a robust, rich interface, enabling them to perform complex business functions. The utilization of a client interface allows users to sort, summarize and display different views on the data without accessing the database. This capability provides great value as the bottleneck in this system is likely to be the network between the end users and the server. FMS is also a web based application. Essentially this means the client and server communicate using standard internet protocols. In particular FMS utilizes SOAP over HTTPS.

4.2.4 Minimize Traffic between the Client and the Middle Tier

Another premise in the FMS architecture is that the network bandwidth between the clients and the servers is likely to be constrained. The FMS architecture utilizes a number of techniques to ensure that data transfer between the clients and servers is minimized.

The first technique employed in the architecture is the restriction of the protocol between the middle and client tiers to XML wrapped in SOAP over HTTP. This restriction ensures that the middle tier can manage the actual data contents distributed to the client. If FMS allowed the client to communicate directly to the database using Net8, substantially more data would be transferred. The reason is that Net8 is a very verbose protocol, transmitting not just data but large amounts of metadata in each transaction.

Since FMS is a web client, the middle tier will not have to transfer any presentation information to the client. In Browser based systems, much of the information passed between the servers and clients was presentation information. In FMS, only data will be passed to the client. Furthermore, FMS will require fewer transactions with the middle tier because the data will reside on the client tier. If a user requests a resorting of information on the screen, the client application can perform the sort without having to make any calls to the server. This kind of intelligent client should minimize network traffic.

A third technique used by the FMS application to minimize data transfer is the utilization of code on the middle tier to optimize communications between middle tier and client tier by reducing the amount of actual data transferred. Intelligent code on the middle tier and unique sessions for each client connection FMS can:

· Store commonly used parameters in session state variables on the middle tier.

· Enumerate long procedure names to integers.

· Execute scripting language in the middle tier memory space instead of on the client.

· Reduce the amount of metadata transferred by having intelligent pieces of code on both ends that understand the content being transferred.

· Eliminate mobile code transfer completely.

4.2.5 Object Oriented Development

FMS is strongly object-oriented because much of the code it is based on is .NET unified classes. The benefits of object-oriented development include encapsulation, which is only exposing specific methods or events to external classes and inheritance where all derived classes and objects inherit changes made to a parent class, unless the changed property, method, or event procedure code has been overwritten at the lower level. This provides the ability to make code fix (a performance enhancement) or addition of new functionality in a single location. Other advantages include the decoupling of dependencies between components or classes. The less coupling between classes the smaller impact when new requirements are added or problems are discovered. A final advantage with object-oriented development is the clean allocation of functionality to developers. Individual developers can work on isolated pieces of code without impacting other subsystems or components.

4.2.6 Data Driven

FMS is a data-driven architecture. This means that simply changing data values can affect the type and amount of code loaded or running at any time. Data values can be stored and retrieved either as database content, values found in configuration files, or registry settings. There is a significant advantage to this approach. Data-driven systems are extremely flexible by design. In other words, the design self checks for changes as application pieces and parts are assembled. In most applications, this is performed through conditional statements in application code. The data value becomes a discriminating metaphor at runtime that's checked before taking action. This approach limits the possibilities regardless of the data values. Only conditions that are checked for are honored at run-time. FMS goes one step further in its architecture. FMS uses data values not as discriminating metaphors but as class names for the system to construct. An example of this would be tree nodes constructed in a tree view. FMS has an extensive class hierarchy of tree nodes described for each business area view. When tree nodes are assembled, the business area screen knows the base class for an FMS tree node and uses this class name as the declaration. The XML stream containing the content used to populate the tree view also contains the descendent class name for the tree node to construct. The application knows how to generically handle tree nodes; however each node constructed by its class name encapsulates the business area's specific tree node functionality.

The disadvantage of data driven systems traditionally is performance. In most cases, deriving the correct action to take at run-time adds overhead to the application causing performance degradation. Some traditional mitigating actions to take to improve performance are to store the discriminating values in a quickly accessible location on the local machine where access is more per formant, like the registry or cache values in memory. The down side to these mitigating actions is synchronizing the configuration settings across multiple installations of the software.

FMS uses a different track for answering the performance issue with data driven systems. Since FMS was designed from inception to be a data-driven system, requests for content and container construction are synchronized to occur simultaneously. This eliminates the need for special trips to the database for configuration information only, thus eliminating the overhead associated with deriving content containers. In other words, FMS defines the class name for the container to hold data at the same time it requests the data. An XML stream containing content also contains the class name of the object to display on the client.

4.2.7 Stored Procedures vs. Dynamic SQL

The strongest reason for using stored procedures is performance. When a dynamic SQL statement is passed to the database for execution, the database must invoke a syntax parser. The length and complexity of a dynamic SQL statement can influence the speed with which it is executed. Long and complex SQL statements can be very expensive operations, as they require a great deal of memory allocations and de-allocations. Since FMS has a very recursive data model, this could be a problem. Some of the queries in FMS require complex sub-select statements. These statements would have to parse each time they are executed. Stored procedures do not require runtime parsing. Databases pre-compile stored procedures when they are developed. The output of this pre-compilation is stored in the database to improve speed at execution time. FMS plans to use stored procedures for these types of complex queries.

The use of stored procedures also has some downsides. One of the drawbacks to building a lot of application code in stored procedures is that the stored procedure languages are vendor specific. This could make it difficult to migrate to a different underlying database. Since the requirement to change databases is not likely to be levied on FMS, this restriction is not significant.

Although database vendors constantly extend stored-procedure languages, these languages are still clumsy compared to the development languages such as Visual Basic and C++. A dynamically built SQL string can easily accomplish what would be tricky to implement in standard stored procedures.

A final down side to the use of stored procedures, is the introduction of another language into the architecture. Every time a new language is introduced into the architecture, one has to consider the ramifications on project staffing, development and testing tools, and configuration management processes. Impacts to staffing could be the requirement to add staff expertise in PL/SQL to development and test teams. Additionally, unit and system test tools may not support proprietary database languages. Configuration management must address software builds for two languages and also capturing metrics such as source lines of code (SLOC) for multiple languages.

4.2.8 Web Services

The core of the FMS system is based on XML Web services. Simply put, a web service is a programmable application component accessible via standard web protocols that provides a universal language for applications to talk to each other. XML Web services allow applications to communicate regardless of operating system or programming language via the Internet, SIPRNET or NIPRNET. Not only can applications share data, they can also invoke capabilities from other applications without regard to how other applications were built. Sharing data through XML allows them to be independent of each other while simultaneously giving them the ability to loosely link themselves into a collaborating group that performs a particular task. This mechanism is used between the client and middle tier within FMS. Perhaps a more powerful use will be to provide FMS data to external sources via a web service. The only issue with this approach is that the data consumers may not have technology advanced enough to take advantage of this capability.

5.0 Software/System Architecture

One of the key components of software architecture is its ability to adapt to new and modified requirements. Systems must be able to adapt to new and modified requirements or they will soon become obsolete as a result of rapid technological advancements or modifications to the business rules implemented in the system. This section will describe the scalable and extensible architecture upon which FMS will be built.

The open architecture is developed in Microsoft’s .Net framework that utilizes industry standard protocols. The use of industry standard protocols allows FMS to accept and distribute information easily from and to various data providers and consumers. Additionally, this modular, component based software architecture is designed to be extended and to adapt to new requirements. Existing components can be modified without affecting other system modules. Additional components, such as new user interface controls, can be “plugged-in” seamlessly.

Components can be built from scratch, inherited from .Net framework base classes or extracted and reused from similar application frameworks. Well-designed interfaces provide enough information to facilitate communication between components, but still provide sufficient flexibility to accommodate changes in the implementation of each component without the need to redesign the interface. Developers can incorporate new third party components by writing wrappers (code that makes the third party application appear as just another component) that enable them to fit the architecture.

5.1 Tiered Architecture

Figure 5-1, Tiered Architecture, illustrates the multi-tiered, component based software architecture of FMS. The software architecture includes three logically distinct “tiers,” each of which focuses independently on a different functional purpose:

· UI Client Services Tier: Handles the user’s experience through the user interface generation and presentation.

· Business Services Tier: Processes user requests, as well as execution of rules and persistence of highly accessed objects.

· Data Services Tier: Handles data management and ingestion, including conversion of data formats.

[image: image13.png]
Figure 5‑1 Tiered Architecture

The partition of the system into distinct tiers provides clearer modularity to the design. Each tier communicates through well-defined interfaces, loosely coupling the components, and shielding components in one tier from implementation changes in another. This design approach also supports parallel development of the system. To completely understand the FMS architecture one must grasp the basics of the .Net framework, as well as the delegation of functionality between the client services, business services and data services. Details of the SRA’s FMS Development Team’s approach for each of these elements will be discussed separately in the following sections.

5.2 .Net Framework

5.2.1 Definition

Microsoft® .Net is a set of Microsoft software technologies for connecting the worlds of information, people, systems, and devices. It enables an unprecedented level of software integration through the use of XML Web services: small, discrete, building-block applications that connect to each other—as well as to other, larger applications—via the Internet. .Net connected software provides the infrastructure developers need to create XML Web services and stitch them together. The benefit to organizations and users is seamless, compelling experiences with information sharing.

The .Net Framework consists of three major areas. The first is the common language runtime, which assumes responsibility for executing the application. The common language runtime ensures that all application dependencies are met, manages memory, and handles such issues as security and language integration. The common language runtime supplies many services that help simplify code development and application deployment while improving application reliability. The bulk of this work is handled transparently, simplifying the tasks of developers and administrators.

The second area is the unified core classes. These classes provide all the facilities that a developer requires to build a modern application, including XML support, networking, and Data Access. Having these unified classes means that a developer building any type of application, whether Windows-based or Web-based, uses the same classes. This consistency results in improved developer productivity and code reuse.

The third and final area involves the presentation classes, which include ASP.Net for the development of Web applications, as well as Web Services and Windows Forms for the development of Windows-based, or "smart client," applications. FMS will likely utilize both of these presentation paradigms. The “smart client” applications will be distributed to users that have to enter and update large amounts of system information. FMS will likely utilize ASP.Net for the presentation of data that will only be viewed. Figure 5-2, .Net Framework, represents these three major areas.

[image: image14.wmf]Operating System

Windows 2000/NT/98/Me - others in the future

Read Only

FMS users

over SIPRNet

and NIPRNet

using any

browser

FMS Data

Creators

and

Modifiers

ASP .NET

Web Forms

Web Services

ASP .NET Application Services

Windows Forms

Controls

Drawing

Windows Application Services

.NET Framework Base Classes

ADO .NET

Net

XML

Security

Threading

Diagnostics

Message Queues

Etc.

Common Language Runtime

Memory Management

Lifecycle Monitoring

Common Type

System

.

N

E

T

F

r

a

m

e

w

o

r

k

Presentation

Classes

Unified Core

Classes

Common

Language

Runtime

Figure 5‑2 .Net Framework

5.2.2 Common Language Runtime

The Common Language Runtime (CLR) is the foundation of the .Net Platform, as it manages the code at execution time. It provides core runtime services, like memory management, thread management, and remoting. “Remoting” is the process run by servers and clients to activate remote objects, objects that live on other servers or clients. .Net supports the execution of code using the CLR and calls this type of code, “Managed Code.” It also supports the execution of code in its native environment. This type of code is said to be “Unmanaged Code.” One example of the difference between code running as Managed versus Unmanaged, is in the stability of applications. .Net was developed with the goal of minimizing application crashes because of bugs or poor implementations. It provides for memory recovery when the memory hasn’t been freed by the application.

5.2.3 Unified Core Classes

The .Net Framework contains a set of unified classes that provide services to all .Net languages. There are several key points to this framework but the most important is that the entire framework is object oriented. This provides the benefit of inheritance, meaning that a developer only has to write code to support non-standard behaviors. Additionally, there are no second-class languages, a Common Business-Oriented Language (COBOL) program can inherit from a C# program which can inherit from a Visual Basic program. This paradigm ensures FMS benefits from the code developed by other developers. Table 5-1, Key .Net Classes in FMS, identifies the major classes that FMS will use as foundations for subsystem functionality.

	.Net Unified Class Name
	FMS Usage

	System.Windows.Forms
	Base definitions for all standard window controls, like text boxes, menus etc.

	System.Drawing
	Enables the development of graphics.

	System.XML
	Serialization of Data for transportation between the software tiers.

	System.Threading
	Simultaneous Execution of Client Threads

	System.Security
	Permissions, Cryptography

	System.Net
	Network communication: web request, web response

	System
	Base types: Object, Byte, Char, Array, Int32, Exception, String

	System.Data
	Relational Database Management, DataBinding, DataRelation, DataRow, DataSet, DataTable

	System.Timers
	Scheduling Rules

	System.Io
	Support synchronous and asynchronous reading from data streams and files

	System.Web.Services.Description
	Enable public description of an XML Web service by using the Web Services Description Language (WSDL)

	System.Web.Services.Discovery
	Allows XML Web service clients to locate the available XML Web services on a Web server through a process called XML Web services Discovery

	System.Web.Services.Protocols
	Defines the protocols used to transmit data across the wire during the communication between XML Web service clients and XML Web services created using ASP.Net

	System.Runtime.Remoting
	Enables application classes to make calls to distributed objects

	System.Web.Services
	Enables construction and use of Web Services.

Table 5‑1 Key .Net Classes in FMS

5.2.4 Web Services

A Web Service is a programmable entity residing on a Web Server exposed via standard Internet protocols. XML is revolutionizing how applications talk to other applications—or more broadly, how computers talk to other computers—by providing a universal data format that lets data be easily adapted or transformed:

· XML Web services allow applications to share data

· XML Web services are discrete units of code; each handles a limited set of tasks

· Web Services are based on XML, the universal language of Internet data exchange, and can be called across platforms and operating systems, regardless of programming language

· .Net is the Microsoft platform for building and deploying XML Web services

XML Web services let applications share data, and—more powerfully—invoke capabilities from other applications without regard to how those applications were built, what operating system or platform they run on, and what devices are used to access them. While XML Web services remain independent of each other, they can loosely link themselves into a collaborating group that performs a particular task.

XML Web services are built on XML, SOAP, the Web Services Description Language (WSDL), and Universal Description, Discovery, and Integration (UDDI) specifications. These constitute a set of baseline specifications that provide the foundation for application integration and aggregation. From these baseline specifications, organizations are building real solutions and getting real value from them. FMS uses web services in several distinct fashions. First, all communication between the client and middle tier is done by calls to Web Services. Additionally, FMS will contain Web Services that expose interfaces to FMS data to external data consumers. In this way the FMS middle tier treats FMS clients and FMS data consumers in the same fashion. The FMS middle tier is indifferent as to the source of the request. This does not imply that the middle tier applies the same security to the different requests; it’s just that once proper credentials are presented, the middle tier performs the requested service regardless of the source of the request.

5.2.5 Extensible Markup Language (XML)

FMS must be able to deal with information that comes from many sources, in diverse formats, and must be able to output information to other systems. XML is increasingly the language of choice for data exchange. Unlike exchanging data using flat files, XML documents can include information about the data as well as the data itself. There are also mechanisms in XML to validate that the information in the document conforms to a set of requirements. This helps ensure high levels of data quality are maintained.

FMS will also transfer content formatted in XML from the middle tier to the client. This is accomplished through the use of Services.Net, which provides a URL for the web service and web method on the middle tier. Additional arguments are passed over the HTTP header as either individual values or XML strings.
[image: image15.wmf]BOI RD AD System

Rich Client

Middle Tier

Database

.NET Framework

FMS GUI Framework

Windows

Business Logic

.NET Framework

FMS Broker Framework

BOI RD AD System

Stored Procedures

Tables

Web Services

Database Infrastructure

Version Control

Figure 5‑3 XML Transfer through Services.Net

5.3 Client Tier

In recent years, much of the client presentation layer has migrated to a “web” based paradigm for two primary reasons. The first is that web, or browser based systems did not require any proprietary communication protocol. All web systems used one protocol, Hypertext Transfer Protocol (HTTP). This protocol could leverage the infrastructure of the Internet, solving difficult connectivity problems of servers and clients that reside on separate networks. The second driver for web-based applications is that the only software required on the end users’ workstation was an Internet Brower. All web-based applications used the same client. This proved to be a great savings for IT administrators who did not have to address the specifics of large numbers of client applications installed on a single desktop.

The Internet browser was never designed to be an application interface, though. It was designed primarily as a mechanism to support the display of information on the Internet. The result was a significant decrease in the graphical and user interface capabilities power in application clients. This is primarily due to the requirement that data presented to a browser must be in Hypertext Markup Language (HTML). HTML is a very structural language that is not very flexible. Unfortunately, this paradigm also requires more network bandwidth because, instead of just moving data between application tiers, systems must pass format and presentation information with the data. Additionally, the development of extensions to HTML to address end user functionality requires more network traffic. Instead of simply running code on the local client the executable code must be passed between the tiers prior to execution. So, support for mobile code requires even larger network bandwidth and often results in very slow applets or controls in user interfaces. So, while browser based systems solved several difficult problems, they created several new problems.

FMS takes a step forward by developing a web-based client application. This means that users access FMS through a Windows based application that is installed on each client PC. The client application combines traditional Win32 clients and web based technology. The rich interface contains implementation of standard windows features like drag and drop, cut, copy and pasting. This interface gives users a more personal, tailored interface that can handle the complicated business processes required for FMS. Yet the client does not rely on any proprietary communication protocol to transmit information. FMS works just like a web browser, communicating XML from a client to a web server. When a user logins into FMS, the client application provides a URL to the middle tier. All future requests are processed like a client server application, avoiding the menacing problems associated with “stateless” connection. Additionally, FMS will only send data between the tiers minimizing the network traffic between the client and middle tier. Section 4, Architectural Premises, addresses some of the techniques employed in FMS to reduce network traffic.

5.3.1 FMS Client Contents

As mentioned earlier, FMS is a web-based, client application. As depicted in Figure 5-4, FMS Client Tier, one of it’s primary ingredients is a multiple document interface (MDI). The MDI provides the FMS client interface that most users will view as the FMS Application. This piece allows users to create requirements and authorization documents, manage the force and unit scenarios, and create and modify basis of issue plans (BOIP). This component utilizes a common data manager to send and receive data from the middle tier. The encapsulation of this logic greatly reduces the amount of necessary code and simplifies the design.

[image: image16]
Figure 5‑4 FMS Client Tier

5.3.2 Multiple Document Interface (MDI)

MDI is a Microsoft Windows programming interface for creating an application that enables users to work with multiple documents at the same time. Each document is in a separate space with its own controls for scrolling. The user can see and work with different documents such as a spreadsheet, a text document, or a drawing space by simply moving the cursor from one space to another.

However, the MDI viewing spaces are confined to the application's window, or client area. Within the client area, each document is displayed within a separate child window. MDI applications can be used for a variety of purposes. For example, working on one document while referring to another document, viewing different presentations of the same information, viewing multiple Web sites at the same time, and any task that requires multiple reference points and work areas at the same time.

FMS takes advantage of native graphical interfaces with MDI, native menu containers, multiple tool bars, short-cut keys, hot-keys, split screen controls, tree views, list views, drag-and-drop, user specific preferences, and the performance of native screen redraws. Figure 5-5, FMS MDI Windows, depicts several of the standard MDI windows that FMS will build. The client code takes great advantage of inheritance. The reusable code in base classes is available to each descendent class. A developer only has to develop logic specific to the inherited class. They do this by overriding the inherited method and extending the capability to implement business area specific logic. Another benefit of using a rich client is the fact that the presentation layer already exists on the user’s machine. This means that only data needs to be passed to the client to have a fully functioning application.

[image: image17.wmf]Properties for Item A

Tab

OK

Cancel

Select From:

OK

Menu

MDI Frame

Business Context

Child

Child

Child

item A

Item B

Item C

Toolbar

STATUS BAR

StatusBar &

Indicators

Content

Window

Context Menu

Figure 5‑5 FMS MDI Windows

5.3.3 Business Object Model
To handle the complexity of FMS’s Requirements, it is necessary to have a comprehensive suite of Business Objects that accurately model the data that drives the FMS client. A suite of business objects was created to model the data in a natural and functionally accurate way.

A good model should hide as much implementation details from the users of the model, the developers. A developer working on the GUI should not know or need to be aware that the data for FMS is coming across a network or from a database; likewise a developer working in the database should not need to consider the various ways the data might be displayed.

Business objects attempts to do this by clearly defining separate layers of objects that abstract and hide away complexity that is unnecessary to the job at hand. There are several goals in the design of the Business objects in FMS:
· Make explicit what we are modeling – One of the benefits of having business object is it makes very explicit what is being worked with. From both the GUI and back-end, developers are working with real business concepts.

· Generalize & Simplify common operations – Creation, Reading, Updating, Deleting.
· Small, simple objects – Business objects should be small and simple, each doing as little work and having as little responsibility as possible.

· Increases reuse – Simpler objects that do one simple thing are much more likely to be reused then monolithic objects that can do many things in only a few particular ways.

· Errors are localized – Errors that do occur are noticed very quickly because the functionality is shared everywhere, and those errors are simple to locate because each object does a very specific task.

· Easier to understand – Simpler objects are easier to understand, and are less likely to contain functionality for multiple purposes. With large objects developers are forced to learn about functionality that they might not need, if only to determine whether or not they do actually need it. It is much easier to never have to learn unnecessary functionality to being with.
The Business Objects in FMS are broken down into three major parts:
· The “Core” – The collection of “pure” business objects. These objects are created agnostic to both any UI or any storage mechanism; they don’t know about the GUI or the database.
· Back end – The Back end contains a suite of objects to load and update the objects in the “Core”. These objects know of the Core and the database, but they do not know of the existence of any UI.

· Front end – The Front end contains objects that deal with the GUI. Similar to the Back end, these objects know about the Core and the .Net GUI API, but they do not know of the existence of any database or storage mechanism.

These three parts allow both the Business Objects to remain simple and uncluttered, but they also allow the developers to only deal with the aspects they need to. A developer adding a new way of viewing data does not need to know anything about the Back end, and visa versa, a developer working on the database does not need to concern herself with any GUI related problems.

From an application perspective, the MDI frame uses the agents and is not aware of the Core business objects. Net Request interfaces with the objects in the Backend and is not directly aware of the Core business objects.
5.3.3.1 Core

As said before, the Core is the pure, GUI and database agnostic part of the model. It models data in the following fashion:
[image: image18.png]
Figure 5‑6 Class Diagram for the Core Functionality
· Atom – An Atom is not a true part of the Model, it is a place holder inheritance parent of Resources and Associations. It contains properties that are common to both Resources and Associations.

· Resource – A Resource represents something tangible in the FMS world. An Asset, a Billet, a BOIP are all types of Resources.

· Association – An Association explicitly models the relationship between any two Resources. Associations are used to show hierarchical ordering in a parent-child relationship.

· ResourceContainer – A specialized Resource, one that contains Associations. A BOIP, a Modernization Option are ResourceContainers. This is also the parent in any Association, since only a ResourceContainer can have child Resources via Associations.

· OriginalData, ModifiedData (a property on Atom) – These contain the properties of any given Atom. The “Original” is the original properties of an Atom when it was created; the “Modified” is a sort of scratch-pad while users are modifying the Atom. When an update occurs, the modified data will be come the original data.

These objects are the basis for the Model, they allow us to model all parts of the system uniquely by specializing these for specific usages, but still allow us to treat like concepts the same when we don’t need to be concerned about their differences.

5.3.3.2 Back end
The Back end is composed of two major concepts: the Repository and the Store. They are shown in the figure below. Note that there is one Repository for each business area while the Store’s organization mimics the hierarchy of the Core.

[image: image19.png]
Figure 5‑7 Class Diagram for the Back End Functionality
· Repository – The Repository is a controlling object; it manages the creation and destruction of objects in the Core and the Backend. It also deals with the pairing of Stores to Core objects

· Store – The purpose of a store is to handle the loading and saving of objects in the Core. Its hierarchy mimics that of the Core, and in practice there is a Store for each type of object in the Core. This allows all different types of objects in the Core to have a specialized way of loading and saving its information. An Asset may load its information differently than a BOIP. The base store is similar to the Atom, it is a inheritance place holder for common operations and properties.

· ResourceStore – A type of Store specialized to handle a Resources’ unique requirements.

· AssociationStore – A type of Store specialized to handle an Associations’ unique requirements.

· ResourceContainerStore – A type of Store specialized to handle a ResourceContainers’ unique requirements. Most notably this involves the operations dealing with child Associations, loading existing Associations, inserting new Associations, and deleting existing Associations.

5.3.3.3 Front end
The Front end is more free-form than the Core or Back end, due to the many different ways the model can be represented to the user. The Front end makes use of a single, highly generic concept to handle all the disparate ways the model may be displayed.

The core concept to the Front end is called an “Agent”. An Agent is an object that represents something in the Core. It acts a diplomat between the Core and the GUI. For example, if we have a GUI control that shows a list of Assets, to keep the Core definition of an Asset free of presentation information, we create an Agent for each Asset, and put the Agents in that GUI control. This allows the Asset to remain completely oblivious to the fact that it is currently being displayed in a GUI control. The Front end is an implementation of the Model-View-Presentation pattern: the business information is represented in the Core (the model), and the Agents (the presentation) represent the information and are displayed by the GUI control (the view).

There are several benefits to this pattern:

· Each Agent makes it’s own decisions on how and what to display of the Core object it is representing.
· For example, consider an Asset show as an item in a list versus a Property Sheet to allow editing an Asset’s properties. The Agent for being displayed in a list would format its properties in one particular fashion based on the list it was being shown in. The Agent for a Property Sheet would show its properties in a very different way, and allow updating of the properties. But both of these displays are covered under the Agent pattern.

· A single Core object can have multiple Agents at any one given time.

· This means a single Asset could be displayed in multiple parts of the GUI at the same time, without duplication of the Asset’s data.

· If a change to the Asset occurs (through one of the Agents), that change can be quickly broadcasted to all other Agents representing that same Core object.

· A single type of Agent can be designed to represent multiple types of Core objects.

· If a list needs to show Assets and Billets, a single type of Agent can be designed to show the properties that are common between them, such as their Effective Date. This eliminates the need to create specialized Agents for both their usage and what they represent.

[image: image20.png]
Figure 5‑8 Class Diagram for the Front End Functionality
The figure above details the core parts of the Front end, and some different types of possible Agents.
· IAgent – The interface that all Agents must implement; it defines the contract that all Agents must adhere to be considered an Agent.

· IGuiAgent – This interface is specifically for GUI Agents. While the primary design of the Agent pattern is for GUI related tasks, the nothing in the Agent pattern links it to a GUI, or even to any sort of UI. An Agent could be created to represent a Core object in any usage, such as for third-party tools that may have unique requirements. A third-party tool might have requirements that are not compatible with the Core’s design. An Agent could be created to map to those requirements without corrupting the Core’s design.

· PropertySheet – A dialog that allows one to edit the properties of a Core object.

· ListViewAgent – An Agent for displaying a Core object in a list GUI control.
· TreeViewNodeAgent – An Agent for displaying a Core object in a simple tree GUI control.

· TreeListNodeAgent – An Agent for displaying a Core object in a more complex tree GUI control.

5.3.4 Data Management (net request)

One of the modular aspects of the FMS system is the fact that all data from the client is passed to the middle tier using open, Internet standards. In FMS, all data sent between the client and data tier is sent as an XML document. A common code component, net request, builds and parses all XML documents that are sent to, and received from, the web services on the middle tier. Net request encapsulates a number of Microsoft’s .Net Framework objects (see Table 5-2) that make it easy to translate data between XML streams and database container classes.

	Class Name
	Description

	UriBuilder
	Provides a custom constructor for uniform resource identifiers (URI) and modifies URIs for the Uri class.

	CookieContainer
	A CookieContainer is a data structure that provides storage for instances of the Cookie class, and which is accessed in a database-like manner.

	WebRequest
	An abstract base class for the .Net Framework's request/response model for accessing data from the Internet.

	WebResponse
	An abstract base class from which protocol-specific response classes are derived.

Table 5‑2 Net Request Classes

Net request uses these classes to take care of the complexity associated with Internet input/output and returns data to other FMS business area objects in a usable container. This greatly simplifies development; because, there is no need to write extensive parsing routines. Net request returns two such readily usable containers: DataSet and XmlDocument. The following two sections describe the methods that return these objects and there characteristics.

5.3.4.1 Get Dataset

Get Dataset returns a .Net Framework DataSet object populated with the requested database content. Get Dataset has a number of overloads to tailor its usage to the programmers needs. The basic input arguments are the path for the target web service and web method separated by a foreword slash and the posted arguments for the web method. For example; in Section 5.3.6.2 DataBroker, procedure 19 has been identified as being an enumerated procedure identifier on the FMS middle tier. An input argument to get dataset would be ProcedureID=19.

Data sets are used throughout the FMS client application. A data set allows a developer to access data in a virtual table format to access data by column name and row. Data sets also provide a means to track changes internally and produce a difference XML schema back to the middle tier as input arguments to the middle tier TransactionBroker. Not all Data sets are retained on the FMS client. Sometimes Data sets are used simply as a convenient container to navigate through in order to populate other client controls like tree views and list views.

5.3.4.2 Get XML Document

Get XML Document has the same overloads as Get Dataset and returns a .Net Framework XmlDocument object. XML Documents are convenient for holding data in hierarchical formats. Unlike data sets that hold data in table format, XML Documents allow a developer to access XML elements inside of XML elements and provides methods to easily navigate up and down a hierarchical chain.

5.3.4.3 System Log

The logfile that resides on the client tier is an important component to the FMS system. Addressing specific problems that users have with the FMS application requires that the system have a thorough logging mechanism.
5.3.4.4 System Registry

In the Microsoft Windows operating systems, beginning with Windows 95, the registry is a single place for keeping such information as what hardware is attached, what system options have been selected, how computer memory is set up, and what application programs are to be present when the operating system is started. The registry is somewhat similar to, and a replacement for, the simpler INI (initialization) and configuration files used in earlier Windows (DOS-based) systems. Historically application developers have used the registry to store a myriad of information variables including runtime configuration variables, user settings, file locations etc. This caused a lot of problems because it was difficult to access or move user specific information from one machine to another.

With the introduction of Windows 2000 and .Net, Microsoft recommends that the use of the registry must be limited to storing configuration and initialization data. Microsoft also recommends that information in the registry should be divided into computer-specific and user-specific data. This distinction allows applications to easily support multiple users and promotes location-independence for user profile data. The goal in the Windows 2000 Application Specification is to reduce the circumstances in which you need to use the registry. For data that is greater than 2kb in size, FMS will store this information in XML files. FMS will store user specific information in the registry on the client. This includes items like, the last page the user accessed.

5.3.4.5 Middle Tier (Business Services)

The middle tier, in FMS, acts as an encapsulation layer in that it hides specifics of the data services tier from the client services and vice versa. This encapsulation greatly reduces maintenance costs as minor changes to the database structure will likely not impact the client and small changes to the client are likely not to impact the database. Communication between clients and middle tier web services is done via Secure Socket Layer (SSL). Application code executed on the middle tier is distributed across multiple middle tier application servers providing load balancing for client requests. Each middle tier application server is connected to the datastore tier via a protected network.

As Figure 5-6, Middle Tier Services indicates, one of the key ingredients on the middle tier is application specific web services. These services provide web methods that accomplish common functions, like the retrieval of data and the submitting of data. These methods are used by nearly all the application subsystems for common services. The other key role of the middle tier is to provide an integration point for other tools and systems. Instead of writing a lot of code to support reporting, FMS will imbed a commercial off the shelf (COTS) reporting tool, Crystal Reports. This tool will reside on one or more middle tier servers, providing read only access to the various entities in the data store. FMS will also support system to system integration for the purpose of data extraction. This function will be developed as a web service and will reside on the middle tier. This section will discuss each of these topics in greater detail.

[image: image21.wmf]FMS BUSINESS SERVICES

System Rule

Manager Services

Process Rule

System Log

System

Registry

Report

Server

NLP Query

Engine

Site Services

Data Broker

Object Broker

User Log Off

User Log On

Rule Services

Binary Code

Source Code

Transaction Broker

Figure 5‑9 Middle Tier Services

One of the easiest ways to understand the functioning of the FMS application is understand a representative flow of data through the system. Figure 5-7, Sample Data Flow, depicts a request to populate a property dialog. This request is initiated when a user right clicks on a specific item. The MDI window captures the event and invokes a method in net request called GetDataSet with a parameter that matches a name value pair in the system registry on the middle tier. The method GetDataSet then makes an HTTP request to the DataBroker web method to retrieve data associated with stored procedure #2. The DataBroker determines the name of the stored procedure by reading the system registry. It then makes a synchronous call to the stored procedure, GetUnitHeader to retrieve the associated data. This is a simple scenario on how data flows through the system.

[image: image22.wmf]Properties for Item A

Tab

OK

Cancel

FMS Application

GetDataSet #2

Net Request

MDI # 1

MDI # 2

Data Broker

Site Services

GetUnitHeader()

ReqDoc

FMS DB

2 = ReqDoc.

GetUnitHeader

Sys Registry

Client

Middle

Data

Figure 5‑10 Sample Data Flow

5.3.5 Web Services

As mentioned in Section 5.2.4 Web Services, the middle tier of FMS is based on the use of Web Services to manage data, user requests and other system services. In increment 1, FMS contains three web services. Two of the web services specifically support the development and execution of system and business rules. These are only briefly discussed in this section, as the content is more appropriate for the section on application subsystems. The site services web service provides functionality common to all business areas. Section 5.4.1.1, discusses this important web service in detail.

5.3.6 Site Services

The FMS site services web service provides multiple web methods to manage dissemination of data to FMS clients, remote instantiation and execution of web objects, creating and disposing of client sessions, transaction processing, along with dissemination of session information to connected clients. The following sections give a brief description of these web methods.

5.3.6.1 Component/Object Broker

The FMS middle tier’s ObjectBroker web method is a general-purpose remote object instantiation mechanism. It is used to disseminate server information to clients, check statuses of running processes, or to interact with non-database related middle tier settings. ObjectBroker acts much the same way as DataBroker and TransactionBroker.

Figure 5-8, ObjectBroker Registry Hive, shows how ObjectBroker identifies a remote objects class name from an enumerated object identifier requested by an FMS client. ObjectBroker creates the requested web object and passes an XML string as an input argument to the newly created web object. ObjectBroker then calls the execute method of the web object and returns an XML string produced by the web object to the FMS client.

[image: image96.wmf]FMS DATA SERVICES

RDBMS

Stored

Procedures

Lookup

Tables

FMS Data

Application

Meta Data

Figure 5‑11 ObjectBroker Registry Hive

5.3.6.2 DataBroker

DataBroker handles general dissemination of database content to FMS clients. DataBroker is a flexible web method used to call stored procedures and return the content as XML datasets to clients. The FMS client application makes multiple requests to DataBroker based on a user requested action to view a business area display. Each business area screen knows the type of data it wants and expresses the data request as an enumerated procedure identifier. Figure 5-9, FMS Registry Hive, shows how DataBroker looks in the registry to see what stored procedure has been registered to provide the content for the client’s enumerated data request.

[image: image23.png]
Figure 5‑12 FMS Registry Hive

In most cases, the DataBroker requires additional input arguments from the client to resolve specific conditional database query criteria. The DataBroker is capable of handling an undetermined number of input arguments. What arguments are needed and what the argument names are can also be resolved by the middle tier’s registry as shown in Figure 5-10.

[image: image24.wmf]

Figure 5‑13 Input Argument Resolution

DataBroker is capable of binding multiple arguments to an Oracle procedure call and translating the binding variable names between the HTTP post name and the Oracle stored procedure’s input variable names. DataBroker also uses the middle tier’s registry to resolve the data types of input arguments for each parameter as shown in Figure 5-10, Input Argument Resolution. In some cases, the requesting user id is required for auditing purposes. Figure 5-11, Requests Requiring User Id, depicts how DataBroker detects requests of this nature.

[image: image25.wmf]

Figure 5‑14 Requests Requiring User Id

Each enumerated procedure identifier has a registry hive that describes all the information necessary to make the procedure call and return the appropriate XML result set.

5.3.6.3 TransactionBroker

TransactionBroker handles FMS client transactions in much the same way as the DataBroker. The TransactionBroker’s purpose is just the opposite of the DataBroker. The DataBroker disseminates result sets to FMS clients, while the TransactionBroker updates client content changes to the database. The TransactionBroker uses the same enumeration mechanism to abstract away specifics and allows the same web method to be used for multiple FMS client transactions. When an FMS client requests TransactionBroker services for a specific business area screen, TransactionBroker looks to see what web transaction object has been registered to perform this business area service.

Figure 5-12, TransactionBroker Registry Hive, shows how TransactionBroker identifies the class name of the registered web transaction object to create. TransactionBroker then passes the new web transaction the XML string that contains the client’s content modifications. TransactionBroker also connects to the database, as the current logged in user, and sets a transaction point. This transaction point serves to mark the point where data is committed or rolled back. TransactionBroker then passes control to the newly created web transaction to update, insert, or delete data and return the success or failure of the transaction. TransactionBroker will then either commit the transaction or roll back the changes to the previously set break point and return any newly created key values or error messages in an XML wrapper to the client.

[image: image26.wmf]

Figure 5‑15 TransactionBroker Registry Hive

	Key Name
	Subscriber
	Purpose

	HKEY_LOCAL_MACHINE\SOFTWARE\ForceMgmt\Authentication
	User Logon
	Resolves the current registered authentication object to use when authenticating a user.

	HKEY_LOCAL_MACHINE\SOFTWARE\ForceMgmt\DataBroker
	Data Broker
	Resolve stored procedure names for an enumerated data request.

	HKEY_LOCAL_MACHINE\SOFTWARE\ForceMgmt\DataTypes
	Data Broker
	Resolve the data type name for an enumerated data type

	HKEY_LOCAL_MACHINE\SOFTWARE\ForceMgmt\ObjectBroker
	Object Broker
	Resolve the class name for an enumerated remote object request

	HKEY_LOCAL_MACHINE\SOFTWARE\ForceMgmt\TransactionBroker
	Transaction Broker
	Resolve the class name for a WebTransaction from an enumerated request

	HKEY_LOCAL_MACHINE\SOFTWARE\ForceMgmt\DatabaseConnection
	Data Broker

Transaction Broker

User Logon
	Resolve the database connect string to use when connecting to the FMS database

5.3.7 Data Consumers

With an n-tier configuration, conceptually the term client has a very broad scope. Initially the client will be a Win32 application providing a graphical interface to allow for day-to-day transactions. This is only the initial implementation. With a middle tier providing business logic and data formatted in XML, clients could extend to include:

Other organizations utilizing FMS as their external interface

Table 5‑3 TransAction Broker Key Names

· Gadgets on Web Portals displaying reports using XSL for formatting

· Secure Web sites providing data entry to FMS by Data Stewards

· Other DoD secure Web sites using FMS to perform loosely coupled data validation

With the introduction of client authentication, FMS can be extended to include automated bulk data refreshes by authoritative sources. By providing a middle tier of business logic behind an XML interface using SSL, the possibilities are virtually limitless.

5.3.8 System Registry

FMS uses the system registry in a different manner on the middle tiers then it did on the client tier. It is used as a quick lookup data store. As mentioned in the previous sections, FMS stores name value pairs for both objects and stored procedures in the system. It uses this technique to minimize traffic between the client and middle tiers as numbers require much less traffic than do longer character strings.

5.4 Datastore Tier

The FMS datastore tier provides a number of services as depicted in Figure 5-13, FMS Database Tier. First, it is responsible for populating the database with data from external sources. FMS uses an Extract Transfer Load (ETL) tool to extract data from the external interfaces and populate the FMS database. The datastore tier is also responsible for synchronizing user accounts with the AKO LDAP directory server. This service on the datastore communicates in a bi-directional fashion with the LDAP directory, allowing each user store the ability to create, delete and update user account information. Finally, and most importantly, the datastore tier is responsible for updating, inserting, deleting and retrieving data. Each of these services is discussed in detail below.

[image: image27.emf]Army

Knowledge

Online

Directory

FMS DATA SERVICES

E

T

L

RDBMS

Database

Stored

Procedures

Directory

Server

LDAP

External

Data

Providers

Figure 5‑16 FMS Database Tier

Future versions may include linking the FMS middle tier with other databases for automated refreshes of data by data stewards.

5.4.1 Stored Procedures

FMS will use stored procedures when possible to perform expensive database operations. The primary benefit of using stored procedures is significantly increased performance because the application’s code is precompiled. When a stored procedure is saved in the database, Oracle parses it for syntactical accuracy and saves the procedure's text in a system table. The first time you execute a procedure, Oracle checks to make sure that the objects the procedure references exist. If they exist, Oracle compiles the procedure into an execution plan and stores the plan in memory cache. All users can then execute this stored procedure from memory cache.

· APP - Application packages called directly from the middle tier to support application logic.

· DBX - Database external interfaces called from the application procedures. They abstract common database functions like getNodeState and getPreferredVersion.

· DBI - Database internal procedures that are called only from the DBX layer and provide the detailed database logic required to support the interface (DBX) functionality.

We will also break the package header and body files out into separate folders in vss corresponding to these areas:

 $

 |---RDB

 |---APP

 |---DBX

 |---DBI

There are two different categories of stored procedures in FMS, stored procedures that are used by multiple subsystems and stored procedures developed specifically for a subsystem.

[image: image28.png]
Figure 5‑17 Database Component Layout

Figure 5-15, FMS Stored Procedures, depicts these two categories.

[image: image29.png]
Figure 5‑18 FMS Stored Procedures

5.4.1.1 Common Stored Procedures
5.4.1.1.1 TransactionBroker

The primary purpose of the TransactionBroker package is to manage the auditing of data changes in FMS. The middle tier invokes methods within TransactionBroker to insert, delete and update data. The TransactionBroker determines if the data request requires auditing. Changes associated with a work product in draft, approved, or published states must be audited. Auditing entails tracking the User Id of the person making the change and the date and time the change was made. In this sense, then, delete is not really the deletion of an actual piece of data. What happens instead is that the work product is placed in a “Deleted” state meaning that it can be archived. Table 5-4, Work Product States, details the states FMS supports for work products.

	State

	Working

	Draft

	Approved

	Published

	Deleted

Table 5‑4 Work Product States

Work Product updates are not traditional updates, either. An update really means create a new version of the work product. This call would result in an insert of a new record or records.

Transactions that do not require auditing, work products in a state of working are much simpler. These transactions function in a more standard fashion. Updates cause the contents of a row or rows to change. No history is maintained on the previous data. Delete requests actually result in the deletion of one or more rows. Again, it is impossible to reverse this transaction, as the record is actually gone.

5.4.1.1.2 DataAccess

The DataAccess package is responsible for managing user roles and groups within FMS. This package is called whenever any user management functions are initiated. Examples of the types of functions performed in this package are: User account creation request, changing of user passwords, account deletions, association of users to one or more groups. This package would be responsible for initiating synchronization of account management with the Army LDAP server. Once the external authentication service is designed, more implementation details will be added here.

5.4.1.1.3 SysComponent

The SysComponent stored procedure is another commonly used package that delivers role information to the client. Menus in FMS are context based, meaning that only information the user is permitted to see is present. The client, then, needs to be able to determine the access level of a user whenever it is displaying menus and menu selections. This package determines tasks and functions for which a user is entitled and passes this information to the middle tier for distribution.

5.4.1.2 Subsystem Stored Procedures

5.4.1.2.1 Requirements Document (Req Doc)

The Req Doc stored procedure is responsible for creating and modifying a requirements document. It also allows an end user the ability to create a document header, Section 1 and Section 2 of a requirements document. It stores all the ingredients of the document created references to tables that contain the base elements.

5.4.1.2.2 Class Inventory

The Class Inventory is responsible for detecting impacts on FMS data when new external data libraries are imported into the system. This is a fairly complicated piece, as it must determine where in the chain the change was introduced and reflect the impacts throughout the rest of the chain. Figure 5-16 depicts the flow of information through FMS. Note that that information flows in both directions: Force Scenario to Unit Scenario to Authorization Documents. Data also starts with a Basis of Issue flows to a Requirements Document and then to an Authorization Document. When a change is introduced at the Basis of Issue, it propagates through the Requirements and Authorization Documents. When a change is introduced to an Authorization Document, it also impacts the Unit Scenario. The Class Inventory determines the direct impact of the new data and any other downstream or upstream impact.

 [image: image30.wmf]Force

Scenario

Unit Scenario

Authorization

Document

Requirements

Document

Basis of Issue

Org Strength

Unit

Reference

Fund Group

Asset

Military Billet

Civilian Billet

Contractor

Billet

Figure 5‑19 Class Inventory Management
5.4.1.2.3 Business Manager

Business Manager packages provide the functionality to view, maintain, and execute business rules. Stored procedures in this package are categorized as either run time packages to execute rules or rule maintenance used by rule administrators. Data returned for rule administration is limited to the rules with in the business area of the logged on rule administrator.

5.4.1.2.4 Basis Of Issue Document

The Basis of Issue store procedure is responsible for the creation and modification of Basis of Issue Plans (BOIP), Incremental Change Packages (ICP), and Modernization Options. This module can determine the modernization path for a piece of equipment, or a unit or a piece of equipment and everything else that is impacted by the modernization.

5.4.1.2.5 Rule Manager

The Rule Manager stored procedure is responsible for storing and retrieving script code that implements business and system rules. FMS stores the source code as a Large Object (GLOB) and stores the compiled version of the rules as Binary Large Objects (BLOB)

5.4.2 Data Population

FMS receives data from a number of different external sources (see Figure 5-17) and during the period of time between Initial Operational Capability (IOC) and Full Operational Capability (FOC) from one internal source. The data population subsystem is scheduled for Increment 2 and additional data will be added to this section at that time.
[image: image31.emf]FMS Data Services Tier

E

T

L

RDBMS

 PA&E

 CEAC

 LOGSA

 CAA PERSCOM

 ASA

 M&RA

 DAMO-OD

Army

Flow

Model

External Data Gold Sources

SAMAScs

FMS Data Gold Sources

Figure 5‑20 Data Population

5.4.3 Major Entity Types in the System

The FMS datastore contains four entity types: stored procedures, FMS data, application metadata, and lookup tables. Figure 5-18, Major Database Entities, depicts these different entities. As stated earlier, stored procedures are one of the primary vehicles to update, insert and delete FMS data. Application metadata tables contain data driven business rules.

[image: image97.png]
Figure 5‑21 Major Database Entities

6.0 Sub Systems

6.1 Common Code

6.1.1 User Interface Infrastructure Code

[image: image98.wmf]
Figure 6‑1 FMS Directory Interface

1.
Menus and Buttons: Driven by Active Window

2.
Child Windows: Primary user workspace

3.
Tree Hierarchy: Visually organizes data

4.
Docking Windows: Used by Tools and other functionality

5.
Status Bar: Display application-wide information

FMS utilizes many different types of code reuse throughout the application. One such mechanism is object inheritance. FMS has many base classes that provide a common behavior for all the descendent classes that inherit from them. A brief description of each base class is necessary to describe the core functionality of the descendent classes and their behavior.

[image: image99.wmf]SiteServices

Win32::

RegistryKey

«uses»

Authenticators::

LdapAuthenticator

Authenticators::

DbAuthenticator

Authenticators::

AkoAuthenticator

{OR}

{OR}

{OR}

Populates

Database:

User name

Database:

password

Error Message:

 Text

Returns (True, False)

Figure 6‑2 FMS Directory Interface (cont.)

1.
Menus and Buttons: Driven by Business Area

2.
View Preference: Display data according to selected context

3.
Navigator: Navigate through Business Area elements

4.
Detail View: Displays contents of a business object

5.
Active Change Package: Records user’s changes

6.
Tools: Support functionality driven by selections

6.1.1.1 Base Navigator

Base navigator is a navigation panel that encapsulates all the method prototypes for data navigation. The base navigator has no controls on it. It is simply the base class for all navigation panels.

6.1.1.2 Multi Navigator

Multi navigator is a descendent of base navigator and has a single tool bar at the top. Multi navigator has a tree view collection property and methods to populate the panel with multiple tree views allowing for multiple hierarchical views of data.

6.1.1.3 Base Detail

Base detail is a generic panel that encapsulates the methods used to show a list of details specific to a selected tree node.

6.1.1.4 Base Sheet

Base sheet is a Windows form that all other main forms inherit from. A main form in FMS is a window that opens as a Multiple Document Interface (MDI) child window. Base sheet is an abstract class that encapsulates all communication with the MDI frame, menu items and tool bars, and security mechanisms.

6.1.1.5 Base Split Screen

Base split screen is a descendent of base sheet and has declarations for a base navigator and a base detail view. Base split screen has a vertical split bar left justified constructed in the class constructor. Base split screen is the base class for most business area main windows.

The remaining sections describe the subsystems that inherit from these base classes. The following subsystems are listed under common code because they are used as common resources for other business area subsystems.

6.1.2 Middle Tier Infrastructure

6.1.2.1 User Management

6.1.2.1.1 Authentication

The FMS middle tier uses the UserLogon web method to perform authentication for an FMS client. Once the client has been authenticated with user name and password, UserLogon creates a new middle tier session and stores the user’s information in session variables. This web method must be called first before any other web method will work on the middle tier. Information stored in session variables is necessary for all other web methods to operate.

The FMS middle tier can authenticate FMS clients with multiple authentication sources. Only one authentication source can be registered at a time, however if the current authentication source is not operating the FMS middle tier can be changed to authenticate with another source. The FMS middle tier supports authentication with either an Oracle database or an LDAP (Lightweight Directory Access Protocol) server. Figure 6-3, User Authentication Source, shows how UserLogon identifies an authentication mechanism’s class name from the middle tier’s registry. Once an authentication object is created, UserLogon passes the new authentication object the user name and password that was entered by the FMS client, and calls on the newly created authentication object’s authenticate method. UserLogon then returns a success message or the error message provided by the authentication object to the FMS client.

 [image: image32.png]
Figure 6‑3 User Authentication Source

[image: image33]
Figure 6‑4 Site Services Authentication

SiteServices is called with an entry point of UserLogon. UserLogon uses the middle tier’s registry to identify the authentication mechanism. UserLogon calls the new object’s Authenticate() method passing the user name and password. Once the user is authenticated, a session is created on the middle tier and the account information is kept on the middle tier for the life of the session.

6.1.2.1.2 User Roles and Permissions

Authenticated users are compared to a table of authorized users

Authorized users are granted one or more FMS roles

FMS Roles are given permissions to application components

A role can belong to one or more business areas

Each application component belongs to a business area

[image: image34.png]
Figure 6‑5 Roles and Permissions

6.1.2.1.3 Content Permissions

Access to application data is granted to an FMS user

Different business areas use different attributes to manage content permissions

All down stream relational data under the designated security attribute for a business area is controlled by the same profile

[image: image35.png]
Figure 6‑6 Content Permissions

6.1.3 System Logging

FMS events are logged on both the middle and client tiers to the Windows event log. FMS logs the event type, date of the event, and the time the event occurred. Event types are one of the following three as defined in Table 6-1.

	Type
	Description

	Information
	Indicates the beginning or completion of a significant operation.

	Warning
	This indicates an exception has been detected that is not immediately significant, but that may cause unexpected behavior.

	Error
	This indicates a significant problem the user should know about; usually a loss of functionality or data.

Table 6‑1 System Logging Event Types

Figure 6-7, Windows Event Viewer, shows all three event types. FMS event log entries are located under Application events in the Windows event viewer and identified by the source name “ForceMgmt”. To view details of a particular logged event, double click the event in the list view located on the right hand side of the screen.

 [image: image36.png]
Figure 6‑7 Windows Event Viewer

Figure 6-8, Information Event, shows the detailed property dialog for an information event logged by FMS. Information events are programmed into FMS by the developers and contain minimum information other than to describe the event that occurred.

 [image: image37.png]
Figure 6‑8 Information Event

Warning and error log events are generated because an exception was thrown by the application. When an exception occurs, the .Net framework creates an exception object that encapsulates information about the exception and a stack trace of FMS modules that were in memory when the exception occurred. By default FMS does not capture stack trace information in the event log to increase performance. Section 6.1.7.3 Log Levels describe how FMS can be configured to capture stack trace information.

Figure 6-9, Warning Event, shows an example of a warning event logged by FMS. Warning events contain information generated by the developer when catching an exception and information generated by the exception object created by the .Net framework. The event properties dialog under description has entries for the source name, source message, and system message. The source name is the name of the component that generated the exception. The source message is a description generated by the developer that caught the exception and describes the operation that was taking place when the exception occurred. The system message is generated by the .Net framework and describes the reason the exception object was generated.

 [image: image38.png]
Figure 6‑9 Warning Event

In this example, the developer was expecting to get a numeric index from an XML stream for an image to be displayed as a tree node or a tool bar item. The probable cause of the exception was either the XML stream did not contain the named attribute or its value had not been set causing a null value to be sent to Microsoft’s core library to represent a numeric index.

This event was logged as a warning because the developer provided a default value or the image index was not mandatory for the operation to successfully complete.

Figure 6-10, Error Event, shows the content of an error event logged by FMS. In this example the .Net framework has generated detailed information used by developers to trouble shoot a significant error. This exception was generated because FMS was trying to instantiate an object from a class name and was unable to resolve the class type.

[image: image39.png]
Figure 6‑10 Error Event

This exception was logged as an error because a significant piece of functionality is potentially missing from the application. When log entries of this type are generated, a dialog box showing similar information would also be shown to the application user indicating a significant loss of functionality.

When errors of this type occurs, an application user can save the log file as a text file and send it to support personnel for analysis. Figure 6-11, Event View Action Menu, shows the save log file as menu item. An application user would select this menu item and be prompted with as save as dialog that allows them to name and save the file to disk.

[image: image40.png]
Figure 6‑11 Event View Action Menu

Figure 6-12, Event Viewer Filter Dialog, shows the filter tab. In this example, the application user has filtered the events to only event sources generated by “ForceMgmt”. When saving a log file after it has been filtered, only those log events that are visible will be saved to the text file.

[image: image41.png]
Figure 6‑12 Event Viewer Filter Dialog

The Windows event log captures events from all applications on a user desktop. If other applications are generating excessive log entries and critical information for trouble shooting FMS errors are being overwritten, the size of the log file can be increased to utilize more disk space. Figure 6-13, Event Viewer Log Size, shows where this configuration change can be made. The maximum log size can be increased as well as altering how Windows overwrites older events.

[image: image42.png]
Figure 6‑13 Event Viewer Log Size

Note that this is a global change and affects all desktop applications that write to the event log. FMS allows an application user to change FMS settings for logging FMS events in the user preferences window.

Reporting errors and general help desk support are issues that will be addressed in increment two of development prior to Initial Operational Capability (IOC).

6.1.3.1 Logging on the Client

The FMS client optionally logs all information events; warnings and errors are automatically logged and available for submission when reporting an error.

6.1.3.2 Logging on the Middle Tier

Content related exceptions that occur on the FMS middle tier are propagated and logged on the client’s machine that caused the exception. There are three reasons for logging content related middle tier exceptions this way.

The first reason is to reduce the overhead of logging on the middle tier. The middle tier is a shared resource and logging events utilize system resources. For example, if 300 users are logged on and they all experience the same exception, 300 exceptions would be triggered and logged on the middle tier. By delegating logging to the client machines that cause the exception, the middle tier simply returns an XML string, as it is expected to do under normal operations. The only difference is that the XML string contains the error message as content rather than FMS data, so no additional burden is placed on the shared resource. The client tier will check to see if an error occurred during middle tier content requests, regardless of whether an exception occurred or not. Logging the exception on the client is simply business as usual. By handling middle tier exceptions this way, each client machine has logged one exception rather than one machine logging the same exceptions for each client machine connected to the middle tier.

The second reason pertains to the FMS distributed architecture in general and the practice of good troubleshooting techniques. If an individual FMS client were unable to connect to the middle tier because of network problems, the middle tier would never know a problem occurred that needed to be logged. By logging middle tier related exceptions on the client, support personnel are able to quickly narrow down the problem to either connectivity or application problems and focus their efforts on the correct tier. The same logic holds true for middle tier client issues that are not connectivity related. If 299 out of 300 connected users request the same data from the middle tier without exception and the 300th gets an error, how would reading a log on the middle tier tell support personnel what the 300th user’s problem was? A single exception out of potentially hundreds of logged events would be lost.

The third reason is because the FMS middle tier is essentially an Internet Information Server (IIS) application, and most exceptions are logged by IIS prior to an application exception being thrown. Support personnel reviewing event logs on the middle tier would need to check entries for both IIS and FMS to get the full picture. Logging would also be distributed across all servers in the middle tier cluster, increasing the amount of analysis needed before an error could be localized to the server where the exception occurred.

The FMS rule scheduler primarily does logging on the middle tier. In this particular case, the FMS middle tier becomes the client. The FMS rule scheduler is a Windows service that runs in the background on the middle tier. The FMS rule scheduler will log information events for both the start and completion of each rule that is ran. Any additional warnings or errors are also logged to the Windows application log.

6.1.3.3 Log Levels

Log levels pertain to the amount of information FMS writes to the Windows application log when a logged event occurs. FMS log levels are “normal” and “debug.” This setting can be changed on the FMS client in the user preferences screen. In normal mode, FMS writes only the information supplied by the initial exception that triggered the log event. The normal log level writes the least amount of data to the Windows application log. In debug mode, FMS logs the initial exception information plus a stack trace of all the loaded modules in memory and the methods that were called prior to the exception’s occurrence. Debug mode only applies to warnings and errors; the content for an information log entry doesn’t change for either log level. Debug mode slows down performance and fills up the Windows application log much quicker. Debug mode should only be used when working with support personnel to resolve a reoccurring error in FMS.

6.1.4 Basic Show Usage Functionality

The Basic Show Usage functionality is available in the Basis of Issue and Requirement Document management screens by one of two selection methods. It will show for a selected node (i.e. BOIP, Mod Op, SFP, SRC, Paragraph) every place it is utilized in the FMS system in a reverse tree (as shown below). The node can be in either the tree or detail view. The user would either select from the FMS Main Menu “Tools => Tool Box => Show Usage”, or right click on the node and select from the menu presented “Tool Box => Show Usage. The user is presented with the Show Usage docker which will be defaulted to the Basic Show Usage functionality. The second icon on the toolbar is a blank window which also denotes to the user that the Basic Show Usage functionality is active (see Figure 6-14).

[image: image43.png]
Figure 6‑14 Selected Notes

6.1.4.1.1 New Item Selection

When a new item is selected in either the tree view or the detail view of the Requirement Document or BOI manager window, the “sync” button is enabled at the top left hand corner of the Show Usage docker (see Figure 6-15).

[image: image44.png]
Figure 6‑15 New Item Selection

6.1.4.1.2 Sync Button

When the sync button is clicked, the results are retrieved in a reverse tree format (see Figure 6-16) and the sync button is grayed out until another item is selected by the user from the tree or detail view.

[image: image45.png]
Figure 6‑16 Synchronized Results

6.1.4.2 New Functionality – Advanced Show Usage: Definition

The new functionality is also available in the Basis of Issue and Requirement Document management screens by one of two selection methods. It should be noted however that the new functionality is completely independent of any selection made of a node in either the management or detail view of the BOIM or Requirement Document Management windows. This tool will provide the user with five separate tabs of different selection criteria for performing searches. The results of those searches will then be presented in a forward view in the docker window.

The user can either select from the FMS Main Menu “Tools => Tool Box => Show Usage”, or right click on a node and select from the menu presented “Tool Box => Show Usage to display of the Basic Show Usage tool. To display the “Advanced Show Usage” tool, the user would click on the down arrow next to the screen icon and select the “Advanced Show Usage” option. When the “Advanced Show Usage” is selected from the drop down at the top of the Show Usage docker, a second toolbar appears, as well as a tab control (see Figure 6-17). Also the second icon on the top toolbar appears as a window containing a “triangle” which informs the user the Advanced Show Usage functionality is active. The button on the left of the second toolbar collapses and expands the tab control. When the tab control is collapsed the button icon is two “down” arrows, when expanded it is two “up” arrows and the button appears depressed (see Figure 6-18). The second button (with the trash can icon) on the second toolbar clears all of values in the textboxes on the tabs.

[image: image46.png]
Figure 6‑17 Advanced Show Usage - Collapsed Window

[image: image47.png]
Figure 6‑18 Advanced Show Usage - Expanded Window

6.1.4.3 Selection Dialog Windows

On each of the five tabs are buttons that display a “Selection Dialog” window when selected (see Figure 6-19). The Selection Dialog window provides the user with the only acceptable data input (multiple selections are allowed) for these fields. The user will not be able to input any other data into these fields other than that appearing in the Selection Dialog. With the exception of the Branch and SRC radio buttons on the Context tab, no dependencies exist among any of the tabs or radio buttons. The contents of the SRC Selection Dialog window depends on if a selection is made in the Branch field. The Branch Selection Dialog window will present the user with only the branches that they have access to in the FMS system, not the total list of branches available. The SRC Selection Dialog will return either all the SRCs created in the FMS system (within the branches that the user has permissions). Returns will occur if no selection is made in the Branch field, or if ONLY the SRCs that exist in the branches are selected in the branch field. If the user attempts to select a branch after having selected an SRC, the contents of the SRC fields will be deleted and must be selected again if desired.

If “Basic Show Usage” is selected again from the drop down in the top toolbar, the second toolbar and the tab control are removed from the Show Usage docker, and the functionality returns to the Basic Show Usage functionality. This can also be accomplished by selecting a new item in either the tree view or the detail view of the Requirement Document or BOI manager window.

[image: image48.png]
Figure 6‑19 Selection Dialog Windows

6.1.4.4 Behaviors for the Selection Dialog Window

1. Items can be selected (i.e., moved from the top listbox into the bottom listbox) in three ways:

a. Typing in the search box above the top listbox - as you type each letter, the selection moves in the list to the item that matches that combination of letters

b. Double-clicking on an item in the top list

c. Single-clicking on a single item

d. Multi-selecting items in the top list while holding down the control key

2. With A and C, after the item or items have been selected, they can be moved to the bottom box either by clicking on the "Add" button, or by pressing the "Enter" key on the keyboard.

3. As each item is added to the bottom listbox, it is removed from the top list box. The items in the bottom listbox are sorted alphabetically as each item is added to the listbox.

4. Items can be removed from the bottom listbox (and moved back to the top listbox) in two ways:

a. Double-clicking on an item

b. Single-clicking on a single item

c. Multi-selecting items in the list while holding down the [Ctrl-K]

5. With B and C, after the item or items have been selected, they can be moved to the top listbox either by clicking on the “Remove” button, or by pressing the “Enter” key on the keyboard.

6. As each item is removed from the bottom listbox, it is added to the top listbox. The items in the top listbox are sorted alphabetically as each item is added to the listbox.

7. Clicking on the “OK” button at the bottom of the dialog window transfers the selected items in the bottom listbox to the textbox (in the ShowUsage docker) that is associated with the button that launched the selection dialog window. The dialog window is also closed. If there are no selections in the bottom listbox, the dialog closes.

8. Clicking on the “Cancel” button closes the selection dialog window, and no values are transferred to textboxes in the Show Usage Docker, even if there are items in the bottom listbox at the time the “Cancel” button is clicked.

9. Within a single criteria field, the operator in the query is “or”. For example, if the user selects 11B and 13C in the Enlisted MOS field, the query should retrieve any document that has either 11B OR 13C in it.

10. Between criteria fields, the operator in the query is “and”. For example, if the user selects a tank LIN and an 11B enlisted billet, the query should retrieve any document that contains both the tank AND the 11B MOS.

6.1.4.5 Known Issues with the Selection Dialog Window

1. In order to double-click on an item to move it from one listbox to the other, the listbox must first be the active control. One click to get into the control is necessary before you can start double-clicking on items to move them. If you try to double-click on an item without first having activated the control (by clicking somewhere in it), it will not get moved. However, from that point on, while you are “in” the listbox, double-clicking on any item will move it to the other listbox.

2. When the focus gets shifted from the search textbox to the listbox, the listbox disappears briefly. The more items there are in the listbox, the longer the listbox takes to reappear. If there are only a few items in the listbox, this behavior is barely detectable, but if there are many items in the listbox, it is very noticeable. This problem is caused by the changing of the selection mode property of the listbox from one to multiple.

3. When using the search box to find an item in the top listbox, the user can only search on code, and not title.

6.1.4.6 Search Results

When any value is entered (via the selection dialog) in a textbox on the tabs, the “sync” button is enabled.

If the user clicks the sync button, a query is run that retrieves the documents that contain the entered criteria in a forward tree format.

The criteria in each of the billet tabs is meant to be retrieved collectively, i.e., if the user selects MOS = 11B, ASI = 2T, and Grade = E4, the query should retrieve any documents that contain all of those items in a single record (an MOS of 11B that has an ASI of 2T and a Grade of E4). If a document has an MOS of 11B with an ASI of 2T, but that MOS does not have E4 as a Grade value, that document should not be returned in the query.

The same goes for the Asset tab – if the user selects a tank, and an ERC code of “A”, then the query should retrieve any document that has that tank with an ERC code of “A”.

6.1.4.7 Tab Listings
6.1.4.7.1 Content Tab

The Branch radio button allows selection of branches that the user has access privileges to in FMS.

The SRC radio button allows selection of SRC’s that belong to the branches they have access privileges to.

If the user has selected Branches in the Branch selection dialog, the SRC list will be limited to those branches.

The Paragraph radio button allows selection of all paragraph titles available in FMS.

[image: image49.png]
Figure 6‑20 Content Tab

6.1.4.8 Asset Tab

The LIN radio button allows selection of all LIN values in the FMS system.

The ERC radio button allows selection of all ERC values in the FMS system.

[image: image50.png]
Figure 6‑21 Asset Tab

6.1.4.9 Enlisted Tab

The MOS radio button allows selection of all MOS values for enlisted personnel only.

The ESL radio button allows selection of all ESL values for enlisted personnel only.

The PSQI radio button allows selection of all PSQI values for enlisted personnel only.

The SDT radio button allows selection of all SDT values for enlisted personnel only.

The Grade radio button allows selection of all Grade values for enlisted personnel only.

The SQI radio button allows selection of all SQI values for enlisted personnel only.

The ASI radio button allows selection of all ASI values for enlisted personnel only.

The Remark radio button allows selection of all Remark values in FMS.

[image: image51.png]
Figure 6‑22 Enlisted Tab

6.1.4.10 Officer Tab

The AOC radio button allows selection of AOC values available for Officer personnel only.

The FA radio button allows selection of FA values available for Officer personnel only.

The SDT radio button allows selection of SDT values available for Officer personnel only.

The Grade radio button allows selection of Grade values available for Officer personnel only.

The Alt FA radio button allows selection of Alt FA values available for Officer personnel only.

The Remark radio button allows selection of Remarks values available in FMS.

[image: image52.png]
Figure 6‑23 Officer Tab

6.1.4.11 Warrant Tab

The MOS radio button allows selection of MOS values available for Warrant Officer Personnel only.

The PSQI radio button allows selection of PSQI values available for Warrant Officer Personnel only

The SDT radio button allows selection of SDT values available for Warrant Officer Personnel only

The Grade radio button allows selection of Grade values available for Warrant Officer Personnel only

The SQI radio button allows selection of SQI values available for Warrant Officer Personnel only

The ASI radio button allows selection of ASI values available for Warrant Officer Personnel only

The Remark radio button allows selection of Remark values available in FMS.

[image: image53.png]
Figure 6‑24 Warrant Tab

6.1.5 Show Support Functionality

The Show Support tool is designed to display the support relationships for a selected Requirement Document. The tool is available for selection when the Requirement Document manager is active. It is invoked by selecting the Show Support option in the Tools=> Tool Box menu.

[image: image54.png]
Figure 6‑25 Show Support Docking Control

6.1.5.1 Tool Layout

Tree-list View - The Support Structure docking control will display the support structure of the selected requirement document in a tree-list view. The selected document will be the root node in the support structure docking control (TBD).

Toolbar – At the top of the Support Structure docking control, there will be a toolbar, consisting of the following buttons:

· Save button – when clicked, this button will save any updates made to the support structure information for the selected requirement document.

· Synchronize button – when clicked, this button will retrieve and display the support structure for the requirement document in the Req Doc Manager that is selected at the time. The first time the Support Structure docking control is invoked, the support structure for the selected requirement document is automatically retrieved and displayed. While the docking control is open, it will be necessary to click the synchronize button in order to retrieve and display the support structure each time a new requirement document is selected in the Req Doc Manager.
· Support Providers and Support Receivers Drop-Down Menu button.
· Support Providers button – when selected, this button will display the requirement documents that provide support to the selected requirement document. This will be the default view.

· Support Receivers button – when selected, this button will display the requirement documents that receive support from the selected requirement document.

· New Support Type button – when clicked, this button will launch a dialog box containing all of the available support types. If a support type already exists in the docker for the selected document, it will not appear in the list of available support types. The user can select one or more support types in the dialog box, and add them to the docker for the selected document. The user can then drag other documents into the newly added support types. Only those support types that have documents added to them will remain associated with the selected document.

[image: image55.png]
Figure 6‑26 Support Type Selection Dialog
The tree-list view will consist of a three-level tree, with the root node being the selected document, the second-level nodes being the support types (in alphabetical order), and the third-level nodes being the requirement documents that either provide support to the selected document, or that receive support from the selected document, depending on which support direction menu option is selected.

The columns in the tree-list view will consist of the requirement document SRC and title and the level of support.

If users attempt to close the Support Structure docking control without having saved any support level changes, they will receive a prompt, asking them if they would like to save the changes. Additions and deletions of support documents will be saved automatically at the time of the transaction.

6.1.5.2 Updating attributes of the supporting or supported requirement documents

The support level for each support document will be displayed in a drop-down list box. The user can modify a support document’s support level by selecting a different value from the drop-down list.

[image: image56.png]
Figure 6‑27 Support Level Update
6.1.5.3 Assigning Support to a selected requirement document

Support can be assigned through:

1. Drag and drop – once the support structure docking control is open for a selected requirement document, other requirement documents can be dragged into the tree-list view, into one of the support type nodes. The support level attribute will need to be assigned after the document is dragged into the support structure. The default initial value will be “UNIT”.

2. Creating a new requirement document based on an existing requirement document – in the New Requirement Document Creation Wizard, the support structure of an existing requirement can be copied to the newly created requirement document. Both the support providers and the support receivers of the existing requirement document will be copied to the newly created requirement document.

6.1.5.4 Removing support from a selected requirement document

A support document can be deleted by selecting the document in the support structure docking control tree-list view and clicking on the Delete submenu item in either the context menu or the main menu.

6.1.5.5 Additional Features

Navigate To – The user can select a support document in the support structure docker, and right-click to select “Navigate To” from the context menu. This will select that document in the Requirement Document Manager navigator treeview.

6.1.6 Show Difference Functionality

The Show Difference tool is designed to highlight the similarities and differences between two resources. The tool is available for selection when a BOI manager or Requirement Document manager is active. It is invoked by selecting the Show Differences option in the Tools=> Tool Box menu.

6.1.6.1 Tool Layout

The layout of the Show Difference tool is presented in the following (figure 6-28).
[image: image57.png]
Figure 6‑28 Show Difference Tool Layout
6.1.6.2 Tool Areas

The five areas of the tool are described as follows:

	Tool Area
	Function

	•
Resource Collections

	The combo boxes identify the root resources that have been selected by the user for comparison.

	•
Resource Properties

	The information presented in this area provides attributes describing the root resource. An additional field labeled “ITOE Options” is displayed when the root resource represents an SRC. The ITOE Options field allow the user to filter the contents of SRCs to display all of the items, BTOE items, ITOE items, or OTOE items in the SRCs.

	•
Resource Contents

	The resources, assets, and billets of the root resource are displayed in the form of trees similar to the display of the BOI and Requirement Document managers.

	•
Content Attribute Panel

	The information presented in this panel represents properties of items which are selected in the Resource Contents areas.

	•
Display Options

	The Summary and Verbose options in this area allow the user to filter the information displayed in the Resource Contents area. Selecting the Summary option will cause the tool to only show content that are different. The Verbose option displays all of the contents.

Table 6‑2 Tool Area Functions

The first four areas of the tool described above display information for a resource on the left side of the tool and a resource on the right side of the tool.

6.1.6.3 Selecting Resources for the Tool

To display and compare resources in the Show Difference tool, the user will drag and drop similar resources that have content from the tree view panel of BOI Requirement Document managers or Show History into the tool. A resource can be drag and drop over the left and right sides of the Resource Collections, Resource Properties, and Resource Contents areas.

6.1.6.4 Conventions Used to Show Similarities and Differences

Discrepancies between the information presented on the left and right side of the tool are color coded as described in the following table:

	Color
	Area
	Description

	black
	All
	The information on the left and right side of the tool are identical.

	red
	Resource Properties

Resource Contents
	The color red indicates that an attribute value of the resource, asset, or billet on the left side is different from the attribute value of the corresponding item on the right side.

	blue
	Resource Contents
	The color blue indicates that the resource, asset, or billet exist on one side of the tool but does not exist on the opposite side of the tool. A placeholder is inserted in the tree of the side where the item does not exist.

	aqua
	Content Attribute Panel
	The color aqua indicates that an attribute value of the resource, asset, or billet on the left side is different from the attribute value of the corresponding item on the right side.

Table 6‑3 Tool Color Codes

6.1.7 Version Control

A new version of a record is only generated upon approval of the current version. A new version is created in ‘working’ status. All change packages that were not approved are automatically associated with the new version. All associated child nodes are cloned with the new version. Multiple or possibly even competing updates to a document can occur in different change packages to a given version of a document.

Change to non-key attribute data of a container or association record is recorded using minor revision numbers of the RESOURCE_SEQ.

[image: image58.png]
Figure 6‑29 Change Packet Changes
6.1.7.1.1 Changing Nodal Attribute

The following Figure represents the process of changing the Nodal Attribute. The stages of the process are as follows:

1. The approved version is demoted to the next working version.

2. The child associations are cloned, and the status is preserved.

3. The minor revision is created and updated.

The base version is the version of the record that is used to represent the structure of the tree.

There are never foreign keys to minor revision records. The change package itself only contains a pointer to the minor revision of the base version.

 [image: image59.png]
Figure 6‑30 Changing the Nodal Attribute
6.1.7.2 Minor Revision Pointer

The change package itself only contains a pointer to the minor revision of the base version.

 [image: image60.png]
Figure 6‑31 Minor Revision Pointer in the Change Caption
6.1.7.3 Changing Associative Attribute

The process for changing an Associative Attribute is detailed below.

1. The approved version is demoted to the next working version.

2. The child associations are cloned, and the status is preserved, except for modified association.

3. Association status changed to Working.

4. The minor revision is created and updated.

 [image: image61.png]
Figure 6‑32 Changing Associative Attribute
As shown below, the change package contains a pointer to the minor revision of the base version and a pointer to the parent container.

[image: image62.png]
Figure 6‑33 Change Package Pointers
6.1.7.4 Deleting an Associative Change

The process for deleting an Associative Change is detailed below:

1. The approved version is demoted to the next working version.

2. The child associations are cloned, and the status is preserved.

3. Association status changed to Working.

4. The minor revision is created and marked for deletion.

 [image: image63.png]
Figure 6‑34 Delete Associative Package
The change package contains a pointer to the minor revision of the base version and a pointer to the parent container.

[image: image64.png]
Figure 6‑35 Change Package Delete Pointers

6.1.7.5 Adding an Associative Change

The process for adding an Associative Change is detailed below:

1. The approved version is demoted to the next working version.

2. The child associations are cloned, and the status is preserved.

3. A new association is added, and the status is set to Working.

4. The new association is linked to the change package.

[image: image65.png]
Figure 6‑36 Adding an Associative Package

The change package contains a pointer to the minor revision of the base version and a pointer to the parent container.

 [image: image66.png]
Figure 6‑37 Add Associative Changes Pointers
6.1.7.6 GetPrefferedVersion

Qualify the version of a resource id based on the context of the change package.

BEGIN

-- Find state of the change package

 l_CPStatus := DBXChangePkg.GetCPStatus (p_ChangePkgID);

-- Check the latest approved version

 begin

 select resource_seq

 into l_approved_seq

 from res_type

 where resource_id = p_resource_id

 and latest_by_Status = 1

 and approval_level = APPROVED;

 if l_CPStatus = CONST_APPROVED

 then

 return l_approved_seq;

 end if;

 -- Get either latest approved or latest relative to my change pkg.

 select nvl(max(resource_seq),l_approved_seq)

 into l_seq

 from app_change_pkg_assoc

 where change_pkg_id = p_ChangePkgID

 and resource_id = p_resource_id;

 return l_seq;

END;

[image: image67.png]
Figure 6‑38 Get Preferred Version
6.1.8 Reason For Change Overview

A Reason for Change (RFC) provides the answer for why something changed in a container or record. It also provides a disciplined approach for tracking related changes on an Army-Wide basis and answers whether or not all changes required by a major action have been made.

The Reason for Change Dialog provides documenters a way to group related changes under a RFC. Using the dialog users can:

a) Create new RFC groups.

b) Add and remove changes to and from RFC groups

c) Alter RFC groups names and descriptions.

d) Notify reviewers, through promotion, that their changes are ready for review.

e) Delete RFC groups.

6.1.8.1 Functionality

1. Set Group: An RFC group can be set for individual Requirement Document Manager Windows. When an RFC group is set then every drag/drop, delete, and property update that occurs in the Window will be assigned under the selected RFC group.

2. Apply Group: After a drag/drop, delete, or property update operation has occurred assigns it to or re-assigns it to any available RFC group.

3. Alter Group: Modify the name and or description of an RFC group.

4. Accept Changes: Promotes all changes under a RFC group to the Draft Approval Level. This action, in affect, notifies the reviewer that all applicable changes have been made to the document for the given reason.

5. Create Group: Creates a new RFC group based on a Pull, Push, or Add operation to a document. (note, this is not fully enforced right now, groups can also be created for property updates but this is unintentional)

6. Delete Group: Removes a group and un-associates any changes under it.

6.1.8.2 Reason for Change Dialog Operation

6.1.8.2.1 Open the Dialog

The Reason for Change dialog is available from the Requirement Document Detail views (Flat, Hierarchical, and Flat Subordinate). The Dialog is invoked from either the toolbox menu or the context menu. The menu item is enabled only for Detail views that displays the contents of a document, in other words if an OE node in the tree view is clicked then the Menu item is disabled.

6.1.8.3 Create a New RFC group

1. Select a working node from within a Requirement Document Detail view and then open the Dialog.

2. Choose the Create Group tab.

3. If the entry boxes are gray then the selected node is not qualified to be a RFC.

4. Enter a name for the Group and a description (tip: Select the action text and copy/paste it into the Group Name entry box)

5. Click Create.

[image: image68.png]
Figure 6‑39 Create Group Tab
6.1.8.4 Set a New RFC Group

1. Open the Dialog

2. Choose the Set Group tab (See Figure 6-38)

3. Select a group from the drop down list

4. Click Set
5. To Clear the group, click Clear
6. Note: The Group name appears in the bar above the Detail View Window (see Figure 6-39).

[image: image69.png]
Figure 6‑40 Set Group Tab

[image: image70.png]
Figure 6‑41 Group Name

6.1.8.5 Accept Changes
1. Open the Dialog

2. Choose the Accept Changes tab

3. Select the RFC group to accept changes for

4. Click Accept
[image: image71.png]
Figure 6‑42 Accept Changes Tab

The Accept All Tool bar button (the blue check symbol) will promote all changes for all RFC groups.

[image: image72.png]
Figure 6‑40 Accept All Tool Bar Button

6.1.8.6 Apply Changes

1. Select nodes from the Detail view

2. Open the Dialog

3. Choose the Apply Changes tab

4. Select a group from the drop down list

5. Click Accept
6. A confirmation message appears (see Figure 6-42)

7. Click OK
[image: image73.png]
Figure 6‑41 Apply Changes Confirmation Message

6.1.8.7 Alter Group

1. Open the Dialog

2. Choose the “Alter Group” tab

3. Enter the alterations

4. Click Alter

6.1.8.8 Delete Group

1. Open the Dialog

2. Choose the Delete Group tab

3. Select a group to delete from the drop down

4. Click Delete
6.1.8.9 Test Case Setup

1. Create CP with Reason Group (Equipment Change)

2. Change BOIP by adding an Asset

3. Go to CPM and push Change to an SRC
4. Go to Req Doc Manager and find the SRC with the change per the push.

6.2 Basis of Issue Class

6.2.1 Functional Description

The class library is a descendent of base split screen. Class library supplies the building blocks used by documenters to produce requirements and authorization documents. It is the people, organizations, and equipment used to build documents and doctrine. FMS supports the hierarchical organization of assets in classes of people, organizations, and equipment. Each class in the class library can contain another class or an asset. An example of this would be a class of equipment containing other classes like Aviation equipment, Electronic equipment, or land vehicles. The operator is free to create new classes or modify existing classes with the appropriate permissions granted.

Each class in the class library can contain actual assets, basis of issue (BOI), or modernization options. An operator can modify the associated items of equipment for BOIs or the sequence of BOIPs in a modernization option, but for the most part, this subsystem is used as a resource for other subsystems in FMS.

6.2.2 Functional Components

6.2.2.1 Basis of Issue Management

A basis of issue consists of a primary asset and its associated items of equipment. The FMS architecture has made extensive improvements in this area over the legacy systems. In FMS, a basis of issue can be associated directly to the requirements document. In legacy systems, a basis of issue was applied to a document. This means the primary asset and its associated items of equipment were added directly to the document. This made it very hard to update the document when the basis of issue changed. The operator would have no idea what assets was part of the original document and which items were added as associated items of equipment from the basis of issue.

FMS provides full support for basis of issue as a native entity in the system. FMS will allow an operator to simply remove the old basis of issue and add the new one. All remnants of the initial basis of issue will be removed.

6.2.2.2 Modernization of Operations

A modernization option is a collection of basis of issues with a modernization sequence to identify the oldest to the newest basis of issue. During application execution, the current date is compared with the affective date of the basis of issue collection to resolve which basis of issue is active in the document. In FMS modernization options are fully supported and can be directly added to a requirements document. Any calculations performed on the document resolves the appropriate basis of issue and are calculated according to the active basis of issue’s primary asset and associated items of equipment.

The modernization option management screen allows an authorized operator to build and manage modernization options for other documenters to use in their work products.

Modernization options are available in the asset management screen as a resource for dragging and dropping to requirement or authorization documents. The modernization options management screen can also be navigated to by popping-up a menu over a modernization option on the asset management screen and selecting explore.

6.3 Force Requirements

6.3.1 Functional Description

The FMS force requirements sub-system makes up a quarter of the FMS application. The force requirements sub-system represents the doctrine that force authorization documents follow. Many of the modernization enhancements built into FMS are made to improve how a requirements document is stored and relationally integrated.

6.3.2 Functional Components

6.3.2.1 Force Requirements Management

The force requirements management screen is where requirement documents are created, modified, and maintained. Requirement documents in FMS are not literally a single document, rather a relational collection of all the pieces and parts that make up the document. Requirement documents contain:

· Organizational Command Structures

· Organizational Support Structures

· One or more Narratives

· Organizational Elements

· Billets

· Assets

· Basis of Issue Plans

· Modernization Options

A requirements document is a living document that represents a conceptual organization assembled for a specific purpose. The document content changes as the organization‘s purpose changes or the equipment utilized by the organization changes.

Because of the constant change, requirement documents can have many revisions from year to year. FMS tracks these revisions and allows an authorized operator to see an audit trail of the document from its creation. Changes are not only linear; sometimes a conceptual organization can go away or its purpose can be split into two separate organizations. Also, two or more conceptual organizations can be merged to create a new conceptual organization. FMS also tracks these types of change and assembles the audit trail for an authorized user.

Because so much information is kept, force requirements management spends the most effort in filtering out the extraneous information to show an operator only those document parts that are approved or the non-approved items that the current operator has created. Because of this filtering to a specific user, not all operators looking at the same document will see the same content.

Individual operators are granted permissions to view, modify, or delete requirements document by branch code.

6.4 Force Authorizations

6.4.1 Functional Description

Force authorizations and its associated components make up one quarter of the FMS application. An authorization document represents an existing operational organization in the army. Like requirements documents, authorization documents are living documents. They change as the organization they represent changes. The force authorization sub-system displays a hierarchical view of the document to the operator and allows the operator to reconcile the actual organization with the new doctrine.

6.4.2 Functional Components

6.4.2.1 Force Authorizations Management

The force authorizations management screen and its associated components allow a documenter to manage change in the system. For authorization documents, change can come from many different places. The doctrine the organization is based on can change. The organization itself can change as mission demands change. Force authorizations management allows an authorized operator to either identify personnel and equipment that is not authorized for the unit or provide written justify for the exception.

The force authorization management sub-system provides extensive functionality to render a single comprehensive graphical representation of the authorization document while combining data from many different single source relational tables.

6.4.2.2 Reconciliation

The FMS reconciliation module is a collection of numerous dialogs and algorithms that helps to identify change when it occurs and automate change based on operator feedback. The objective is to automatically identify change as it occurs in the system and communicate that change back to the operator with one or more reconciliation options to choose from.

Another feature implemented in the reconciliation module is to show the how a change can impact the document before making it. In many cases, what seems to be a small change to an authorization document can be extensive after all the appropriate dependencies are added to the document. The reconciliation module searches for second and third order impacts to a document and displays those impacts to the operator to help the documenter make informed decisions.

This capability represents a major improvement over existing FM software. With the current systems, a years worth of change is accumulated before the reconciliation process begins. Not surprisingly, the following reconciliation of change can also take a year to complete.

6.5 Release Control

6.5.1 Functional Description

Release control’s main window is a descendent of base split screen. The FMS release control module manages what operators see as their daily work products. Each operator in a business area is working toward a consolidated update. If a consolidated update has not previously been selected, the operator will be prompted to choose one from a list. A consolidated update is a collection of lock points. Lock points are work products within a business area that are managed and controlled by the business area. Multiple common business areas can exist in a single consolidated update. A consolidated update can be thought of as a point in time when work products will be released to the Army community. It is a milestone where FM passes its work product on to other organizations in a larger workflow process.

A consolidated update represents a collection of all work products in FMS where the content of the work products have been reconciled with one another. FM can then easily identify, store and release these work products to the army community.

6.6 Change Package Management

6.6.1 Functional Components

6.6.1.1 Reason for Change

The issue library’s main window is a descendent of base split screen. The issue library and its associated components are part of the audit trail that documents reason for change. An issue can be associated with any primary entity in FMS and viewed from multiple places. The issue module is specifically called out in functional requirements and represents a significant modernization facet in FMS.

A change in FMS frequently occurs as a rippling affect from other work products in FMS that changed. For this reason, issues can be associated with other issues building a tree of change that ripples down from the initiating or “root” change. A practical example of this would be the introduction of a new piece of equipment in a requirement document for an infantry branch. This would cause a change to all the authorization documents in the infantry branch, which would cause a change in manpower allocation, which would cause a change in budget and so on.

6.7 Rules

6.7.1 Functional Description

In FMS, a rule is defined as, “a set of information which will produce a desired repeatable output for use by data consumers.” The FMS solution has further broken down the implementation of a rule into two functional categories: system rules and business rules.

An FMS business rule is a rule that is applied specifically to the business activities of the FM enterprise and is implemented by the software of the FMS application. Technically speaking, a business rule (also known as business logic) is implemented through the combination of any number of technical processes, e.g., validation edits, logon verifications, database lookups, policies, and algorithmic transformations. The FMS user has limited control over the implementation and execution of these types of rules once the application is completed.

6.8 Version Management

6.8.1 Functional Description

[image: image74.wmf]V1.1

V1.2

RD

RD

RD

BOIP

BOIP

BOIP

BOIP

BOIP

AD

AD

AD

AD

AD

AD

AD

AD

AD

BOIP

V2.0

V1.0

V4.1

V1.1

V3.4

V3.3

V1.1

V1.2

V2.1

V8.7

V8.8

V4.6

V4.5

V2.0

V2.1

Figure 6‑42 Version Management Diagram

 [image: image75.wmf]Application Logic

 (Resource ID, Resource Seq, SuperType,

 userid, transactiontype, ...)

ForceMgmt.TransactionStore

RunDBTransactionBroker

DBXTransactionBroker

 ProcessTransaction()

Middle Tier

Database Tier

DBIVersion

NextMinor

NextMajor

NewResource

 :

DBIChangePkg

ExistInCurrent

AddEntry

UndoEntry

CreateNewPkg

GetEntries

DBIInsertTransaction

 ProcessInsert

New Resource Id, New Resource Seq

If transaction type is not DELETE

 Update non key attributes

 where resource_id = New Resource Id

 and resource_seq = New Resource Seq

DBXSuperType

InsertResTypeRecord

InsertAssetTypeRecord

InsertUnitRefTypeRecord

InsertOrgReqTypeRecord

InsertFundGroupTypeRecord

InsertBilletMilTypeRecord

InsertExtTypeRecord

DBXChangePkg

MergePkg

PromoteToDraft

PromoteInDraft

Approve

Figure 6‑43 Middle and Database Tiers

Goal: To handle all the data manipulation housekeeping behind update, insert, and delete operations the DBX Transaction Broker is responsible for:

Returning the appropriate Resource ID and Sequence number

Taking care of demoting approved versions of data

Always returning the proper working version of a resource for update, delete or insert
Determining whether a delete operation physically removes a record or marks it for deletion

Creating a supertype record, and the subtype record on insert operation

Adding change package entries

The application code does the following for an insert of a nodal record
1.
Calls the DBX Transaction Broker to create a new supertype record. DBX Transaction Broker returns the id and seq

2.
The change is recorded in the change package

3.
The application code updates non key attributes of the new record in the subtype table with the given id and sequence

The application code does the following for an update of a nodal record
1.
Calls the DBX Transaction Broker to get an updatable version of the record

2.
A new working version is created if needed. The minor revision is created and returned

3.
The change is recorded in the change package

4.
DBX Transaction Broker returns the id and seq of the record to update

5.
The application code updates the subtype table using the returned id and sequence in the where clause

The application code does the following for a delete of a nodal record:
1.
Calls the DBX Transaction Broker. A new working version is created if needed

2.
A minor revision is created and marked as deleted

3.
The change is recorded in the change package

4.
The id and sequence of the minor revision are returned

When a new association is made the application code does the following:
1.
The DBX Transaction Broker demotes the parent of the association if necessary. This creates a new working version of the parent

2.
The DBX Transaction Broker creates a new association resource record

3.
The DBX Transaction Broker then uses the parent resource id and sequence obtained in step 1 as the parent. It uses the base child resource version it wants to associate, which may be a working or approved version

4.
Change is recorded in the change package

When an association is deleted the application code does the following:

1.
Calls DBX Transaction Broker which demotes the parent node if necessary

2.
The DBX Transaction Broker will create a new working version of the associative record if necessary

3.
It creates a minor revision and marks it for deletion. The ID and sequence of the minor revision is returned

4.
The change is recorded in the change package

When an association is updated the application code does the following:
1.
The application calls the DBX Transaction Broker which will create a new working version of the associative record if necessary. It creates a minor revision and the ID and sequence of the minor revision is returned

2.
The application updates the subtype record using the returned ID and sequence

3.
Change is recorded in the change package

Public Methods:

ProcessNodalTransaction:

This is used to process insert, update, and delete operations on a nodal record, depending on the transaction type. This will manage the supertype table, and create a new record if necessary. The proper version of the resource will be returned

ProcessAssociativeTransaction:

This is used to process insert, update, and delete operations on an associative record, depending on the transaction type. This will manage the supertype table, and create a new record if necessary. The proper version of the resource will be returned. It will also force the demotion and new version of the parent record if necessary

ProcessPushToParent:

Apply changes into a parent container. Changes on a child container are applied to a parent container. If the parent container is approved, then the parent container is demoted, and the application of the change on the child container is associated with the parent

ProcessSoftPush:

Soft push changes into a parent container results in no change to the change package. The soft push results in a message being deposited to the target. If the target is Approved the message is attached to the Approved version. When the version is modified and moved to Working, all attached messages also migrate with it. The message is really attached to the resource id only, and is not version specific

6.9 Database

The FMS database tier is a collection of stored programs and data that resides in an Oracle 9i database. The data model on which the database rests has evolved over the past two years, and can generally be expressed as a normalized data model with little semantic representation. In the data modeling world, there is a conceptual distinction between the logical and physical data models, where the logical represents real life entities and their interrelationships, and the physical is more or less how these entities and relationships are being stored. By looking at the logical model, one should be able to understand the semantics of the entities and relationships of the real world. Entities are normally uniquely identified by natural keys. END_STATE has no logical model, only a single physical one. Artificial keys uniquely identify END_STATE entities, and are not descriptive of the nature of the entity.

The physical model is based on seven super type tables, RES_TYPE, ASSET_TYPE, UNIT_REF_TYPE, ORG_REQ_TYPE, FUND_GROUP_TYPE, EXT_TYPE, and BILLET_MIL_TYPE. All super types have the same behavior with respect to associative relationships, change packages and version control.

This document serves to explain some of the key aspects of the data model, as well as explaining the database side of the software architecture designed for END_STATE.

6.9.1 Understanding the Data Model

At the crux of the data model are the ID and SEQ columns, which represent the primary key of the super type table. Relationships between subtype entities are generally implemented through an associative table that maps parent id to child id, and the key to the associative record is itself another id/sequence pair. This makes the data model extremely flexible and adaptable to changes or uncertainties of the business data, since changes in cardinality of between entities do not require a change in the physical data structure. The drawback is that it is so flexible that the semantics commonly built into a “typical” data model is lost. This is not necessarily a bad thing. It just means that the data model is more difficult to understand.

The key columns are prefixed by a name indicative of the super type. For example, for the RES_TYPE super type, these columns are RESOURCE_ID and RESOURCE_SEQ. For ASSET_TYPE, the ASSET_ID and ASSET_SEQ are the key columns.

SuperType
Key Base Name

RES_TYPE
RESOURCE

ASSET
ASSET

UNIT_REF
UNIT_REFERENCE

ORG_REQ
ORG_REQ

FUND_GROUP
FUND_GROUP

BILLET_MIL
BILLET_MIL

EXT
EXT

	SuperType
	Key Base Name

	RES_TYPE
	RESOURCE

	ASSET
	ASSET

	UNIT_REF
	UNIT_REFERENCE

	ORG_REQ
	ORG_REQ

	FUND_GROUP
	FUND_GROUP

	BILLET_MIL
	BILLET_MIL

	EXT
	EXT

Table 6‑4 Super Type Key Columns

The super type tables follow a strict pattern that is important to adhere to. Much of the change package and versioning logic depends on the conformity to this pattern when generically constructing dynamic SQL statements to execute. Looking at the RES_TYPE table as an example, the table is defined as follows.

CREATE TABLE RES_TYPE (

 RESOURCE_ID NUMBER NOT NULL,

 RESOURCE_SEQ NUMBER NOT NULL,

 RESOURCE_TYPE NUMBER NOT NULL,

 BRANCH_SERIES VARCHAR2 (2),

 SEC_CLASS_CODE NUMBER,

 RECORD_STATUS_CODE NUMBER,

 APPROVAL_LEVEL VARCHAR2 (1),

 CREATION_DATE DATE NOT NULL,

 VALID_DATE DATE,

 ARCHIVE_DATE DATE,

 OLAP_DATE DATE,

 RESOURCE_EDATE DATE,

 RESOURCE_TDATE DATE,

 USER_ID NUMBER,

 CHANGE_PKG_ID NUMBER,

 LATEST_TIP NUMBER,

 LATEST_BY_STATUS NUMBER,

 CONSTRAINT PK_RES_TYPE

 PRIMARY KEY (RESOURCE_ID, RESOURCE_SEQ)) ;

A row in the supertype table can be one of many different subtypes. In the RES_TYPE table, there can be over 150 possible subtypes. The RESOURCE_TYPE column is a foreign key to the RES_DEF_TYPE table which describes the subtype.

CREATE TABLE RES_DEF_TYPE (

 RESOURCE_TYPE NUMBER NOT NULL,

 VALID_DATE DATE NOT NULL,

 ARCHIVE_DATE DATE,

 TITLE VARCHAR2 (1024) NOT NULL,

 TABLE_NAME VARCHAR2 (30) NOT NULL,

 DESCRIPTION VARCHAR2 (1024),

 NODE_ASSOC_INDICATOR NUMBER,

 BUSINESS_AREA_ID NUMBER,

 VERSIONENABLED CHAR (1) DEFAULT 'Y',

 CP_DISPLAY_TEXT VARCHAR2 (200),

 CONSTRAINT PK_RES_DEF_TYPE

 PRIMARY KEY (RESOURCE_TYPE)) ;

The TABLE_NAME column in the RES_DEF_TYPE table gives the name of the subtype table. To find the instance of a record in the RES_TYPE table, the resource id and sequence would also be found in the table given in the TABLE_NAME column of the corresponding RES_DEF_TYPE row. The NODE_ASSOC_INDICATOR column is a binary flag, which indicates whether the table is an associative table that links two nodal tables, or if the table is simply a nodal table. A value of 0 indicates nodal, and 1 indicates an associative table.

[image: image76.wmf]Resource_id

Resource_seq

Resource_type

Approval_level

Sec_class_code

Record_status_code

Creation_date

Resource_edate

resource_tdate

RES_TYPE

Resource_id

Resource_seq

Resource_type

Approval_level

Sec_class_code

Record_status_code

Creation_date

Resource_edate

resource_tdate

RES_TYPE

Resource_type

Title

Table_name

Description

Node_assoc_indicator

Valid_date

Business_area_id

RES_DEF_TYPE

Resource_type

Title

Table_name

Description

Node_assoc_indicator

Valid_date

Business_area_id

RES_DEF_TYPE

Resource_type_rule_id

Parent_resource_type

Child_resource_type

Assoc_resource_type

RES_DEF_TYPE_ASSOC_RULE

Resource_type_rule_id

Parent_resource_type

Child_resource_type

Assoc_resource_type

RES_DEF_TYPE_ASSOC_RULE

ISS_ISSUE

13

BOI_ICP

12

US_UNIT_HEADER_VARIENT

10

REL_CONSOLIDATION_UPDATE

8

RES_COMMENT

7

BOI_CLASS

6

BOI_BOIP

5

BOI_BILLET_MILITARY

4

BOI_BILLET_CONTRACTOR

3

BOI_BILLET_CIVILIAN

2

BOI_ASSET

1

Table_name

Resource_type

ISS_ISSUE

13

BOI_ICP

12

US_UNIT_HEADER_VARIENT

10

REL_CONSOLIDATION_UPDATE

8

RES_COMMENT

7

BOI_CLASS

6

BOI_BOIP

5

BOI_BILLET_MILITARY

4

BOI_BILLET_CONTRACTOR

3

BOI_BILLET_CIVILIAN

2

BOI_ASSET

1

Table_name

Resource_type

22

6

9

12

6

8

5

6

7

3

6

6

2

6

5

1

6

3

25

6

2

40

40

40

40

40

40

40

41

6

6

1

CHILD

PARENT

ID

ASSOC

22

6

9

12

6

8

5

6

7

3

6

6

2

6

5

1

6

3

25

6

2

40

40

40

40

40

40

40

41

6

6

1

CHILD

PARENT

ID

22

6

9

12

6

8

5

6

7

3

6

6

2

6

5

1

6

3

25

6

2

40

40

40

40

40

40

40

41

40

40

40

40

40

40

40

41

6

6

1

CHILD

PARENT

ID

ASSOC

Figure 6‑44 Associative Table

All subtype tables have resource id and sequence numbers as their primary keys, which are really foreign keys back to the RES_TYPE table. The RES_DEF_TYPE_ASSOC_RULE table is used to determine the valid relationships between the different resource types.

CREATE TABLE RES_DEF_TYPE_ASSOC_RULE (

 RESOURCE_TYPE_RULE_ID NUMBER NOT NULL,

 PARENT_RESOURCE_TYPE NUMBER,

 CHILD_RESOURCE_TYPE NUMBER,

 CARDINALITY_INDICATOR NUMBER,

 ASSOC_RESOURCE_TYPE NUMBER,

 CONSTRAINT PK_RES_DEF_TYPE_ASSOC_RULE

 PRIMARY KEY (RESOURCE_TYPE_RULE_ID)) ;

A valid relationship between two resource types is enforced by adding a row in this table with the resource type of the parent, child, and the resource type of the association table where the actual instances of the association are kept.

	Resource Type Rule ID
	Parent Resource Type
	Child Resource Type
	Assoc Resource Type

	1
	6
	25
	40

Table 6‑5 Parent-Child Resource Types Example

For the sample data given above, the parent resource of 6 has child records of type 25, which is implemented in the associative table having resource type 40. Looking up these values in the RES_DEF_TYPE table we see that the BOI_ASSOC_CLASS table stores relationships between BOI_CLASS records and BOI_ORG_ELEMENT records.

Resource Type
Table name

6
BOI_CLASS

25
BOI_ORG_ELEMENT

40
BOI_ASSOC_CLASS

	Resource Type
	Table name

	6
	BOI_CLASS

	25
	BOI_ORG_ELEMENT

	40
	BOI_ASSOC_CLASS

Table 6‑6 Resource Table Name Examples

[image: image77]
Table 6‑7 Resource Associative Table

6.9.2 Subject Area Descriptions

The END_STATE data model consists of several groupings of tables or subject areas, which are identified by the first set of characters in the table name. For a functional description of each area, see Chapter 4 of the Force Management System Design Document.

	Super Type
	Subject Area
	Table Name Prefix

	ASSET
	FMS Asset Library
	ASSET_

	BILLET_MIL
	FMS Billet Military Library
	BILLET_MIL

	EXT
	FMS External File Library
	EXT

	FUND_GROUP
	FMS Fund Group Library
	FUND_GROUP

	ORG_REQ
	FMS Organizational Strength Library
	ORG_REQ

	RES_TYPE
	FMS Authorization Document Module
	AD

	
	FMS Basis Of Issue (BOI) Module
	BOI

	
	FMS Force Scenario Module
	FS

	
	FMS Issue Module
	ISS

	
	FMS Release Control Module
	REL

	
	FMS Requirement Document Module
	RD

	
	FMS Rule Engine Library
	RE

	
	FMS Unit Scenario Module
	US

	UNIT_REF
	FMS Unit Reference Library
	UNIT_REF

	No super type
	FMS Application Control Module
	APP

	
	FMS Billet Civilian Library
	BILLET_CIV

	
	FMS Billet Contractor Library
	BILLET_COTR

Table 6‑8 END_STATE Data Model

Currently, the Application Control, Basis of Issue, and Requirement Document modules are the most mature in terms of data population and code.

Application Control Module

The tables used for application control begin with APP_. The FMS application is “data driven”. Application control constructs such as menus and other components are context sensitive relative to the user and role privileges. This control information is stored and maintained in the application control module. Application control is further broken down into groups of tables that contain data pertaining to:

· Access Roles and Privileges

· System component control

· Change Package support

· Application Lookup Tables

· Misc FMS application support

The application control tables are not part of the seven super types, and are modeled following conventional normalization patterns. See the ERWIN diagram for more details.

Basis of Issue Module

Basis Of Issue (BOI) Tree & Detail Views

The most prevalent piece of the Basis Of Issue Module is the BOI Tree. This tree is comprised of a number of different types of nodes including Basis Of Issue Class (CLASS), Basis Of Issue Plan (BOIP), Modernization Option (MOD_OPTION), System Fielding Package (SFP), Asset (ASSET), Organizational Element (ORG_ELEMENT) and Military Billet (BILLET_MIL).

Nodes vs. Associations

As mentioned above, the BOI Tree contains nodes and represents the associations between those nodes. The nodes themselves are defined in tables named “BOI_<node_name>”. For example, a record for the definition of a particular CLASS node would be stored in BOI_CLASS. The associations between nodes are, in many cases, stored in tables labeled “BOI_ASSOC_<node_name>”, where <node_name> is the parent in the association. The primary key of each node and associative table is RESOURCE_ID, RESOURCE_SEQ. These keys will be used to identify the parent and child in an associative relationship, where the PARENT_RESOURCE_ID and PARENT_RESOURCE_SEQ correspond to a RESOURCE_ID and RESOURCE_SEQ in the relevant node table. Similarly, CHILD_RESOURCE_ID and CHILD_RESOURCE_SEQ correspond to a RESOURCE_ID and RESOURCE_SEQ in the relevant node table.

Basis Of Issue Class (CLASS)

[image: image100.wmf]

When the BOI Tree is initially retrieved, the first-level CLASSes appear under the root node. These CLASSes (which currently include “ASSETS”, “BILLETS”, and “ORGANIZATIONAL ELEMENTS”) are retrieved because they are stored in the database as children of a higher-level CLASS called “RESOURCE”. This “RESOURCE” CLASS does not appear in the BOI Tree, but is stored in the database as a child of a LOCK_POINT. A LOCK_POINT is the data starting point for loading the BOI Tree. Here is how the data is populated:

Figure 6‑45 BOI Tree

A LOCK_POINT for BOI is identified by a RESOURCE_ID and RESOURCE_SEQ in table REL_LOCK_POINT.

In REL_ASSOC_LOCK_POINT, there is a record having this BOI LOCK_POINT as the PARENT_RESOURCE_ID and PARENT_RESOURCE_SEQ, while the CHILD_RESOURCE_ID and CHILD_RESOURCE_SEQ is the RESOURCE_ID and RESOURCE_SEQ of the “RESOURCE” CLASS.

Each CLASS, including “RESOURCE”, is defined in the BOI_CLASS table. In this table, an important non-key attribute is BOI_CLASS_TYPE. This gives a type to the CLASS, which can be used to distinguish between classes for permissions or other purposes.

The “RESOURCE” CLASS exists as a parent in the BOI_ASSOC_CLASS_REC table. This table associates CLASSes to other CLASSes. Wherever this “RESOURCE” CLASS exists as a parent, the child CLASS is shown as the first level of the BOI Tree under the root node. As mentioned above, currently these CLASSes include “ASSETS”, “BILLETS”, and “ORGANIZATIONAL ELEMENTS”.

The “ASSETS” tree contains a taxonomy of CLASSes, each of which may contain BOIPs, MOD_OPTIONs, SFPs and ASSETS (and other CLASSes). Each of these nodes has exactly one parent CLASS. This is called the “home” of a node. The “home” is defined by a record in the table BOI_ASSOC_CLASS where the parent is a CLASS and the child is a BOIP, MOD_OPTION, SFP or ASSET.

The “BILLETS” tree will contain child CLASSes “MILITARY”, “CIVILIAN”, and “CONTRACTOR”, which are the branches for the respective billet hierarchies. Currently, only the “MILITARY” child CLASS exists. This “MILITARY” CLASS appears as a parent in BOI_ASSOC_CLASS_REC with CLASSes “ENLISTED”, “WARRANT”, and “OFFICER” as child CLASSes. The RESOURCE_ID and RESOURCE_SEQ of these three records in BOI_ASSOC_CLASS_REC are the starting point for the BILLET_MIL hierarchy. This RESOURCE_ID and RESOURCE_SEQ exist as parents in BOI_ASSOC_CLASS. The child of the association corresponds to a record in BOI_ BILLET_MILITARY, which holds only the RESOURCE_ID and RESOURCE_SEQ of the BILLET_MIL. More information about this BILLET_MIL is found the BILLET_MIL library. The RESOURCE_ID and RESOURCE_SEQ in this node table (BOI_BILLET_MILITARY) exist as an association in BOI_ASSOC_BILLET_MIL table, which will contain the corresponding BILLET_MIL_ID and BILLET_MIL_SEQ. This key exists as the primary key in BILLET_MIL_ASSOC table. The child corresponds to a record in one of the BILLET_MIL node tables such as BILLET_MIL_MOS. The title and code of this record is the node that is represented in the billet hierarchy. The next level of the tree is retrieved by using the primary key in BOI_ASSOC_CLASS as a parent in the same table.

[image: image78.png]
Figure 6‑46 BILLETS Tree

Basis Of Issue Plan (BOIP)

Each BOIP has exactly one “home” CLASS. The “Navigate To” (as well as “Search”) menu option for a BOIP will find this “home”. As mentioned above, a BOIP exists in BOI_ASSOC_CLASS as a child only once. This child RESOURCE_ID and RESOURCE_SEQ corresponds to a record in BOI_BOIP which holds information about the BOIP including the title, code, and base/mod code. Functionally, every BOIP has a “Primary LIN”. This “Primary LIN” is an ASSET that is the main piece of equipment for the BOIP. A BOIP has exactly one “Primary LIN”. This association is represented in BOI_ASSOC_BOIP table where the parent is the BOIP and the child is the ASSET. This “Primary LIN” appears in the detail view as the first item (different color) after clicking on a BOIP in the tree. Additionally, a BOIP may have zero or more “Associated Support Resources”. These associations exist in BOI_ASSOC_BOIP_SUPPORT where the parent is the BOIP and the child is a BOIP, MOD_OPTION, SFP, BILLET_MIL, or an ASSET. The number of records that exist containing a given association represents quantity.

Modernization Option (MOD_OPTION)

Each MOD_OPTION has exactly one “home” CLASS. The “Navigate To” (as well as “Search”) menu option for a MOD_OPTION will find this “home”. As mentioned above, a MOD_OPTION exists in BOI_ASSOC_CLASS as a child only once. This child RESOURCE_ID and RESOURCE_SEQ corresponds to a record in BOI_MOD_OPTION which holds information about the MOD_OPTION including the title and code. A MOD_OPTION consists of a number of nodes that represent change over time. These associations exist in BOI_ASSOC_MOD_OPTION where the parent is the MOD_OPTION and the child is a BOIP, MOD_OPTION, SFP, or an ASSET. Non-key attributes in this table describe base/mod code as well as replacement ratio. Each child of a MOD_OPTION should be unique. Quantity is represented by PREVIOUS_QUANTITY and REPLACEMENT_QUANTITY attributes.

System Fielding Package (SFP)

Each SFP has exactly one “home” CLASS. The “Navigate To” (as well as “Search”) menu option for an SFP will find this “home”. As mentioned above, an SFP exists in BOI_ASSOC_CLASS as a child only once. This child RESOURCE_ID and RESOURCE_SEQ corresponds to a record in BOI_SFP which holds information about the SFP including the title and code. An SFP consists of a number of related nodes. These associations exist in BOI_ASSOC_SFP and BOI_ASSOC_SFP_REC where the parent is the SFP and the child is a BOIP, MOD_OPTION, BILLET_MIL or an ASSET (in the former table) and the child is an SFP (in the latter table). The number of records that exist containing a given association represents quantity.

Asset (ASSET)

Each ASSET has exactly one “home” CLASS. The “Navigate To” (as well as “Search”) menu option for an ASSET will find this “home”. As mentioned above, an ASSET exists in BOI_ASSOC_CLASS as a child only once. This child RESOURCE_ID and RESOURCE_SEQ corresponds to a record in BOI_ASSET which holds only the RESOURCE_ID and RESOURCE_SEQ of the ASSET. More information about the ASSET can be found in the ASSET library. The corresponding ASSET_ID and ASSET_SEQ can be found in table BOI_ASSOC_ASSET. The ASSET_ID and ASSET_SEQ are used to acquire the title and code from the ASSET_LIN table, as well as other information about the ASSET.

Requirement Document Module

The requirement documents are containers, which are comprised of leaf nodes and other containers. Containers generally can have leaf nodes or other containers as children, and leaf nodes have no children by definition. A leaf node is an Asset, Civilian Billet, Contractor Billet, or Military Billet. A container is a modernization option (MODOP), basis of issue plan (BOIP), system fielding package (SFP) or other requirement document (SRC or paragraph).

All of these values are defined in the RES_DEF_TYPE table and the values are defined as constants in stored procedures, client code and middle tier. The values are 1 for Asset, 2 for Civilian Billet, 3 for Contractor Billet, 4 for Military Billet, 5 for BOIP, 12 for SFP, 22 for MODOP, and 28 for SRC and paragraph.

When a requirement document is stored in the database, the underlying structure of any associated container such as a BOIP or MODOP is replicated. This is because the usage and structure of the included container may have characteristics unique to the requirement document that includes it. When a requirement document is created, or when containers are dragged into a parent requirement document, the recursive structure of the included container is essentially copied and stored away from the “home” of the container. The following tables are used to support the requirements document data.

6.9.3 RD_REQ_DOC

This table is a nodal table that contains requirement documents, SRCs, and paragraphs. The combination of branch_series from RES_TYPE and the following columns from RD_REQ_DOC (echelon, unique_code, organization_type, edition, variation, and src_variation) derive the SRC code.

RD_ASSOC_CONTAINER

This table contains information about containers included in requirement documents. The primary key is the resource_id and resource_seq which defines a unique parent and child relationship. The parent is always a requirement document at the root of any given tree. Each container will only appear once for each instance of it in the tree. This means that even if a path goes through a container more than once the container will only once be a child in this table but may appear as a parent in this table for as many child containers as live under it. Parent nodes are defined in the table by parent_cont_resource_id and parent_cont_resource_seq except when a child container is directly related to a requirement document. In this case, they will have null values for these columns. If its children are leaf nodes, then the resource_id and resource_seq that define this container will be the foreign key to container_resource_id and container_resource_seq in the RD_ASSOC_DETAIL table.

6.9.4 RD_ASSOC_CONTAINER PATH

This table serves as a pointer from a container and its entire path back to the tree in the basis of issue module where it was created. The resource_id and resource_seq, foreign keys from the RD_ASSOC_CONTAINER table, along with the step comprise the primary key for this table. Each row is a specific segment in a path to the container. For each container in the RD_ASSOC_CONTAINER table, this table will define the entire path of containers that must be traversed to get to it. The parent_resource_id, parent_resource_seq, child_resource_id and child_resource_seq each define a relationship between two containers in the basis of issue module because they are a resource_id and resource_seq from an associative table that has a parent and child pair of its own. For this reason, a first level item will have no value in this table. A second level item will have only one step that will have a path between three containers.

6.9.5 RD_ASSOC_DETAIL

This table defines all of the leaf nodes contained within a requirement document. The columns container_resource_id and container_resource_seq define the immediate container of the leaf node. The columns resource_id and resource_seq from RD_ASSOC_CONTAINER are foreign keys to those values respectively. The columns lvl1_resource_id and lvl1_resource_seq are the resource_id and resource_seq of the container immediately under the root requirement document. The foreign keys for these columns come from the RD_ASSOC_CONTAINER table that defines the container.

6.9.6 RD_ASSOC_BILLET

This table is an associative table for billet data in terms of a requirement document.

6.9.7 RD_ASSOC_BMIL

This table defines billets in terms of a requirement document. These values are obtained from the values that have been set in the basis of issue module. The will follow standard billet hierarchy as defined in BILLET_MIL_ASSOC no matter what level the billet was dragged in from.

6.9.8 RD_ASSOC_REC_STRUCT

This table contains command and support structure or requirement documents that have other requirement documents or paragraphs as children. The structure is established through the parent_assoc_id and parent_assoc_seq which is a foreign key from the resource_id and resource_seq of this table. The entire tree of a requirement document can be walked by connecting prior parent_assoc_id and parent_assoc_seq to the next resource_id and resource_seq. The rel_assoc_id and rel_assoc_seq is a pointer to the root relationship between a requirement document and its child. Since requirement document structure is managed only one level deep we must maintain this correspondence so that when an item is deleted or altered that change will be impacted in all other trees in which that relationship exists.

Displaying and Inserting Requirement Document Children

A requirement document’s child information is managed at the first level. Therefore children can only be added or deleted at the first level below a requirement document. This causes requirement document trees to be complicated to maintain.

Assets and Billets (Leaf Nodes)

These items are stored in the RD_ASSOC_DETAIL table. They can be inserted directly into a requirement document or can be inserted as the children of a container. When inserted directly into a requirement document the lvl1_resource_id, lvl1_resource_seq, container_resource_id and container_resource_seq are all null. Otherwise, the lvl1_resource_id and lvl1_resource_seq are the resource_id and resource_seq from the RD_ASSOC_CONTAINER table that corresponds to the parent directly related to the requirement document and the container_resource_id and container_resource_seq are the resource_id and resource_seq from RD_ASSOC_CONTAINER that is the immediate parent of this item. The requirement document that is at the root of the tree is the parent_resource_id and parent_resource_seq. This is a foreign key from the RD_REQ_DOC table. The child_resource_id and child_resource_seq is a foreign key to the relevant table in the asset or billet library.

BOIPs, ModOps, SFPs (Containers)

These values are dragged in from the basis of issue module. They are stored in the RD_ASSOC_CONTAINER and RD_ASSOC_CONTAINER_PATH tables.

Other SRCs

The command and support structure is a requirement document that contains other requirement documents. These associations are created in the RD_ASSOC_REC_STRUCT table. The command and support tree structure of a requirement document is handled by defining a parent (parent_resource_id and parent_resource_seq) and a child (child_resource_id and child_resource_seq) as well as defining the association directly above it (parent_assoc_id and parent_assoc_seq) and the root association that was created at the first level (rel_assoc_id and rel_assoc_seq).

6.9.9 Hierarchical vs. Flat View Display

Displaying items in a hierarchical view allows us to speed up performance by only loading one level of items at a time. Depending on our filter view we load the necessary children and determine whether they have children of their own. If they do have children we apply an expander, or plus, icon to them so that a user can expand and see their children but we don’t actually preload the children. This allows us to avoid making unnecessary calls to the database for data the user does not need. The children are loaded only when a user clicks to expand a node. Children of a requirement document can come from RD_ASSOC_CONTAINER, RD_ASSOC_DETAIL, and RD_ASSOC_REC_STRUCT. All of these tables must be searched to find child data for a requirement document.

The flat view displays only assets and billets in two different types of rolled up formats. The hybrid view rolls up items in the containers that contain them and the aggregate rollup view rolls up all like items. Counts are made on the RD_ASSOC_DETAIL table in the first case by grouping based on the container_resource_id and container_resource_seq and in the second case by grouping all child_resource_id and child_resource_seq like values.

The filters determine what kind of data is displayed in each of these views. A rollup view just groups values and applies a count. The subordinate view will display paragraphs and other SRCs under a requirement document but a direct will not. A base view will only display items that are base to the requirement document and base and modernization displays all.

6.9.10 Base and Modernization Options

Base or modernization applies to an item with respect to a requirement document. An item is base if there are no earlier versions of this item currently being used. Assets and billets that reside directly under a requirement document have a base_mod_option_code of base by default otherwise it is equivalent to that of its container. This value is updated through property dialogs. It is stored in the RD_ASSOC_DETAIL table and is compared to the filter option that is selected by the user. If no base_mod_option_code is set then the item will not appear in view because the data is invalid.

Base and modernization for containers apply directly to BOIP, otherwise the container takes on the value of its container or is base by default. This value is stored in the base_mod_option_code field in the RD_ASSOC_CONTAINER table. This value is compared to the filter option that the user selects and if it is not set to base or modernization the application will not display the container.

[image: image79.emf]Requirement Document 1

(1R)

Modop 1

(1M)

A

BOIP 1

(1B)

B

Asset 1

(1A)

Asset 2

(2A)

Billet 1

(1Bil)

D

C

E

Figure 6‑47 Requirement Document Tree

RD_REQ_DOC

resource_id
resource_seq
…

RD_ASSOC_CONTAINER

	Column_name
	row1
	row2

	resource_id
	A
	B

	resource_seq
	1
	1

	parent_resource_id
	1R
	1B

	parent_resource_seq
	1
	1

	child_resource_id
	1M
	1B

	child_resource_seq
	1
	1

	parent_cont_resource_id
	
	A

	parent_cont_resource_seq
	
	1

	base_mod_option_code
	1
	1

	tree_level
	1
	1

	mic
	1
	1

	Exception_deviation_code
	1
	1

RD_ASSOC_DETAIL

	Column_name
	row1
	row2
	row3

	resource_id
	C
	D
	E

	resource_seq
	1
	1
	1

	resource_type
	1
	1
	4

	parent_resource_id
	1R
	1R
	1R

	parent_resource_seq
	1
	1
	1

	base_mod_option_code
	1
	1
	1

	container_resource_id
	1B
	1B
	1B

	container_resource_seq
	1
	1
	1

	child_resource_id
	1A
	2A
	1Bil

	child_resource_seq
	1
	1
	1

	lvl1_resource_id
	1M
	1M
	1M

	lvl1_resource_seq
	1
	1
	1

RD_ASSOC_CONTAINER_PATH

	Column_name
	row1

	resource_id
	B

	resource_seq
	1

	Step
	1

	parent_resource_id
	A

	parent_resource_seq
	1

	child_resource_id
	X

	child_resource_seq
	1

Note: RD_ASSOC_CONTAINER_PATH has X and 1 for the child_resource_id and child_resource_seq. These values correspond to the association resource_id and resource_seq from the basis of issue module. In this particular example that would come from the BOI_ASSOC_MOD_OP

6.9.11 Authorization Document
In FMS, Unit authorizations are integrated into a single living document that describes all allocated resources across time. Build Cycles traditionally locked to specific Fiscal Years are now much more flexible, being driven by user need rather than any arbitrary policy. The Authorization Document Manager provides controls that are specific to this objective

· The Auth Doc Date Range Toolbar

 A date range toolbar sits at the top of the Auth Doc detail view, and looks like this:

[image: image80.png]
Figure 6‑48 The date range toolbar

The date range toolbar lets you do two things:

· Select the date filter: Dates selected in the toolbar are used to filter the contents of both the navigator and the detail view. Items with dates outside the range selected will not appear.

· Control drag-drop dates: Items dropped into an Auth Doc take the Start Date and End Date from the toolbar as their Effective and Termination Dates.

So the command structure, section 1, and section 2 information about a unit are all assigned effective and termination dates. Information that never changes will have a null termination date, and thus display in more date range choices.

6.9.11.1 Navigational Structure

To support the Army’s initiative to templatize TDA units, the navigation is be ReqDoc-driven.
[image: image81.png]
Figure 6‑49 Authorization Document Navigation View
6.9.11.2 Authorization Document Cycle Creator

The Authorization Document Cycle Creator window is launched from the right-most button on the date range toolbar at the top of both the flat and hierarchical detail views when an Auth Doc has been selected in the tree view.

[image: image82.png]
Figure 6‑50 Authorization Document Detail View
The Authorization Document Cycle Creator allows the user to select which resources should and should not be included in the build cycle established by the date range (Start Date and End Date).

Once the window has been opened, all the resources in the Auth Doc will appear, regardless of the effective and termination dates of the resource. The resources containing a checkmark are effective at some point during the date range and the resources containing no checkmark are not effective at any point during the date range. Un-checking the box will cause the resource to no longer be effective during the date range and checking the box will cause the resource to be effective during the date range. The following diagram shows the behavior of the dates as they relate to the checkboxes.

[image: image83.wmf]Before

After

null Effective Date

null Effective Date

= null Termination Date

(

)

Figure 6‑51 Document Cycle Creator Functionality
Once changes have been made, the OK button saves the changes and the detail view should reflect said changes.

[image: image84.png]
Figure 6‑52 Document Cycle Creator
Internally, these windows make use of a table structure similar to that of the Requirement Document business area. Unit-authorized Assets and Billets are stored in AD_ASSOC_DETAIL, whereas Unit-authorized BOIPs and MODOPs are stored in AD_ASSOC_CONTAINER.
6.9.12 Create New Authorization Document Wizard

This tool allows a user to create a new Authorization Document (Auth Doc). Currently, a new Auth Doc can only be created based on an existing Requirement Document (Req Doc). There is a further restriction for this version of the software that the Req Doc must be a battalion level SRC. That is, the root level Req Doc must have another level of subordinate SRCs representing companies and each of these companies must contain only paragraphs which contain the actual assets and billets.

SRC (Battalion)

 |_ SRC (Company)

 |
|_Paragraph

 | |__ Assets

 |
 |__ Billets

 |
|__Paragraph

 | |__Assets

 |
 |__Billets

 |_SRC (Company)

 |
|_Paragraph

 | |__ Assets

 |
 |__ Billets

 |
|__Paragraph

 | |__Assets

 |
 |__Billets

etc.

The wizard is invoked by first selecting the Req Doc which serves as the template for the Auth Doc creation. The user then supplies the UIC code of the Auth Doc. The next step is very important and constitutes the “mapping” of the subordinate SRCs (Companys) to the derivative UICs of the proposed Auth Doc. This determines which derivative UIC the contents of each subordinate SRC (each of the paragraphs and their assets and billets) are copied into. The last step involves setting a subset of the common unit header properties for the UIC. Once the user supplies these inputs the contents of the Req Doc are then copied to the new Auth Doc. This involves many transactions on the database and can easily run for several minutes.

Once the new Auth Doc is created, the detail view displaying the contents of the document may appear blank. This is because the user must now “configure” the document for the current time period. This involves setting the “start date” and “end date” of the contents of the Auth Doc as well as selecting the proper modernization levels. See the section on the “Authorization Document Cycle Creator” tool.

6.9.13 Stored Procedure Architecture

There are three layers of abstraction defined for database procedures. They are abstract layer, business area, and discrete business area.

[image: image85.emf]Database Component Layout

FMS Database Tier

FMS Middle Tier

DB Transaction Broker

(ProcessNodalTxn)

Change Package Support Internal Version Support

Public Version Support

(GetNodeState

GetPreferredVersion)

Public Change Package

Support

(Promote/Approve

CreateCP)

Internal Batch Job Support

Public Batch Job Services

 Application Data Access Procedures

Middle Tier

Application Logic

Data BrokerTransaction Broker

Special Req Doc Support

Concurrency Control / IPC

ScenarioRules

Internal Rules

Engine

Applicaiton

Package Layer

(APP)

Database

External

Inteface Layer

(DBX)

Database

Processing

Layer

(DBI)

Figure 6‑53 Database Component Layout

The database external interface layer has public infrastructure related functions. It also contains overloads for infrastructure operations for business areas that require special processing. For example, specialized processing for requirements documents that occurs behind the scenes due to data denormalization and specialized data structures is isolated from the “normal” logic flow of the requirements documents section of the application. This behind the scenes processing is not part of the normal transaction broker, but augments the transaction broker in a way that promotes the same consistency with the rest of the application.

The database internal layer does much of bookkeeping for change packaging, version control, and concurrency control. Public functions implemented in this layer are never called by the application layer. Further, functions in this layer have no business logic. They are generally low level routines that are used to maintain integrity of the data and abstract data types.

Naming Conventions

The naming convention used for packages is:
PKG<abstract layer><business area><discrete area>

The standard values for abstract layer are defined as follows.

<abstract layer> ::= APP|DBX|DBI

APP
APPlication packages called directly from the middle tier to support application logic.

DBX
DataBase eXternal interfaces called from the application procedures. They abstract common database functions like getNodeState and getPreferredVersion. The DBX layer presents the database infrastructure interface.

DBI
DataBase Internal procedures that are called only from the DBX layer and provide the detailed database logic required to support the interface (DBX) functionality.

The business area corresponds to a functional subject area. The value to be used is defined by the lead developer of that area. Once defined, all developers should adhere to that name. Currently, the business areas defined are

<business area> ::= REQDOC|BOI|VERSION|CHANGE_PKG

The discrete area is left to the individual developer. It should describe the functional operation implemented in the package.

<discrete area>::= some descriptive text like Tree, Property, Detail, Wizard, FlatView, etc..

Example: For requirements document hierarchical view package, you would get

PkgAppReqDocHierarchicalView

The abstract layers will also be implemented in Source Safe using the following directory structure. We will also break the package header and body files out into separate folders.

 $

 |---RDB

 |---APP

 |---DBX

 |---DBI

Description of Key FMS Database Infrastructure Components

The database infrastructure is a service layer of code that provides common functionality for version control, change packaging, rules, scenarios, transaction and job control, and communications and concurrency control. Additional components will be added as the system matures and needs identified.

Version Control

Version control in FMS means that changes to the underlying data is subject to the FMS approval process, thereby enabling change control and audit capabilities on the data. A table is version enabled if the VersionEnabled flag is set to ‘Y’ in the <SuperType>_DEF_TYPE table, i.e. the RES_DEF_TYPE table. When enabled, changes to data in the table that stores the actual information about the type are automatically reflected in the user’s active change package. The state of the version is controlled through the supertype table. Key aspects used are:

	ID
	Uniquely identifies the “thing” that data is being maintained for.

	SEQ
	Revision of the ID. This number may either be a whole number or a decimal number. A whole number represents a “base” version. A decimal number is a “minor” revision.

	APPROVAL_LEVEL
	Values are either 1 for “Working” or 5 for “Approved”.

	RECORD_STATUS_CODE
	1 for Active, 2 for Inactive. 2 means that the record is marked as deleted but needs to be retained for auditing and historical purposes only.

	LATEST_TIP
	Flag that lets us quickly identify the most recent version of the resource.

	LATEST_BY_STATUS
	Flag that lets us quickly identify the most recent version of the resource having a specific approval level.

Table 6‑9 Version Control Key Aspects

Changes to data from a version enabled table can only be made if the record is in the working status. If an approved record needs to be modified, it is first demoted, which means that a new working version of that record is created. When a new working version is created, it is created with the next highest sequence number, and the data attributes are copied from the approved record and stored in the new record. The update is applied to the working version. There can never be a change made to approved data. If there were associations to the approved record, they are cloned and updated to point to the new working record.

View Preference is an important concept in the FMS application. As users are actively making changes to data, other users do not necessarily want to view those changes. The application has the ability to let the user dictate the view they want to see. The choices basically allow the user to view:

· the latest approved data

· the data relative to the active change package

· the data in a particular draft promotion state

To make this possible, queries that access the database must filter data relative to the GetPreferredVersion function. This function takes into consideration the various states of change the data is in as well as the user’s active change package state to determine the proper representation of data to present to the user. Multiple users can make simultaneous committed changes to the same data, and consequently expect to see different data results.

Change Packaging

The database infrastructure supports change package management through the PKGDBXChangePkg package. This package provides facilities to create a new change package, add change package entries, undo entries, and promote and approve change packages. Tables used to store relevant information are:

	Table Name
	Description

	APP_CHANGE_PKG
	Change package header information

	APP_CHANGE_PKG_ASSOC
	Change package entry details

	APP_CHANGE_PKG_HISTORY
	When a change package is approved or promoted, a history record is created.

	APP_CHANGE_PKG_USER
	Associative table that defines which users have access rights to specific change packages

Table 6‑10 Change Package Table

Transaction and Job control

The database transaction broker PkgDBXTransactionBroker is responsible for maintaining the integrity of insert, update, and delete transactions with respect to version control and change packaging. All DML operations from the middle tier should flow through this level of abstraction. The PkgDBXTransactionBroker is responsible for:

· Generating new system assigned primary key identifiers

· Creating new supertype and subtype records

· Taking care of demoting data when necessary

· Passing back pointers to updateable versions of records

· Taking care of push to parent logic, hard and soft

The database infrastructure will also provide facilities to submit and maintain long running batch jobs.

Clients of the transaction broker basically adhere to the following protocol.

// Client wants to create new nodal record

Call transaction broker. Pass in transaction type Insert.

Transaction broker creates the supertype and subtype record, populating non-null values with default data.

Transaction broker adds pointer to new record to change package.

Transaction broker passes back id and sequence of new record.

Client updates the data using the id and sequence passed back.

// Client wants to update nodal record

Client calls transaction broker, passing in update transaction type and id and sequence number of record to update.

Transaction broker ensures that the nodal record is working. If not working, it demotes the latest version and creates a working version.

Transaction broker creates a minor revision of the working record.

Transaction broker adds pointer to minor revision of the working version of record to the change package.

Transaction broker passes back the id and sequence of the minor revision to the new working version.

Client updates the record based on the id and sequence handed back.

Associative transaction behaves in a similar fashion, only the parent and child id and sequence are passed when a new association is created. Associating a child to an approved parent causes a demotion of the parent.

Communications and Concurrency Control

The database infrastructure also provides support for messaging, inter-process communication, and concurrency control.

7.0 Deployment

7.1 Client Versioning

Since FMS requires a software installation on end users’ desktop, the FMS design must address the issue of client versioning. This includes the guarantee that the FMS clients are compatible with versions of the middle tier and datastore tiers as well as ensuring an easy mechanism to redistribute the FMS client as new releases become available. The first problem, client and middle tier compatibility, levies the requirement of tracking versions in both the client and middle tiers. In this scenario, Figure 7-1, Initial Operating Capability, FMS Versions, FMS is currently deployed at two locations, Ft. Leavenworth and the Pentagon. All clients are currently on version 1.2. The middle and datastore tiers are on versions 1.5 and 1.3 respectively. These versions are all compatible, so the system functions well.

[image: image86.wmf]FMS

Client

Version

1.2

FMS

Client

Version

1.2

Ft. Leavenworth

FMS

Client

Version

1.2

FMS

Client

Version

1.2

Pentagon

CTO, Ft. Belvoir

FMS Middle

Tier

Version 1.5

FMS Datastore

Version 1.3

Web Method A

Web Method B

Web Service

Web Method A

Web Method B

Web Method A

Web Method B

Figure 7‑1 Initial Operating Capability FMS Versions

At the scheduled release date, FMS delivers a new software release. Refer to Figure 7-2, FMS Updated State. This new release contains changes to the middle tier and client tier. Web method A in the web service required additional logic to handle a new feature in the client. The new version of method A was developed to be backward compatible. In this example, the developers added a new parameter that contained a null default value. This ensures that FMS client version 1.2 will still be able to invoke method A. The release also required the development of a new web method C. This method supercedes web method B. Note version 1.3 does not use web method B anymore. Instead it now invokes method C. This does not impact existing clients, as web method B is still available for them. This flexibility allows the IT Administrators to install newer versions of the client in a more gradual fashion. Note that Ft. Leavenworth is in the middle of making the software upgrade, while the Pentagon hasn’t started the migration. It’s important to provide flexibility in supporting multiple clients, but it can actually cause problems for other parts of the organization like the help desk and the development team because problems need to be investigated with more variables. So, FMS will only support two versions of the client at anytime.

[image: image87.wmf]FMS

Client

Version

1.3

FMS

Client

Version

1.2

Ft. Leavenworth

FMS

Client

Version

1.2

FMS

Client

Version

1.2

Pentagon

CTO, Ft. Belvoir

FMS Middle

Tier

Version 1.6

Web Method A’

Web Method B

Web Method C

Web Service

Web Method A

Web Method B

Web Method A

Web Method B

Web Method A’

Web Method C

FMS Datastore

Version 1.3

Figure 7‑2 FMS Updated State

The middle tier is responsible for managing compatibility. In the rare instances where it is impossible to make the middle tier compatible with older versions of the client or if clients are two releases behind the current release, the middle tier will detect if the client is out of date. The middle tier will terminate the session with the client and return a compatibility error message. This message will be displayed to the user prior to application termination. The user will then have to update their version of the client to ensure proper system function.

The other issue faced by IT Administrators today is the compatibility among applications on the desktop. Windows applications that relied on “standard” dll files were often in conflict with one another. This is because the Windows registry and OS was designed to execute only one version of a dll. So if one application installed a version of a common dll and another application later installed a different version of the common dll, the first application may cease to function as the previous dll was overwritten. In the .Net framework, applications are self-describing and require no registry entries. This means that multiple applications can have different versions of the same dll and not interfere with each other. The ability to deploy a client application without having to write to the system registry also means that an FMS Administrator, rather than an IT administrator, could control when new versions are “pushed” to the desktops. Additionally, the ability for .Net to support multiple assemblies in an application supports the distribution of new functionality in a separate assembly. This makes the amount of data that needs to be re-distributed much smaller. These techniques will help address the traditional problems with client installations.

8.0 External Interfaces

8.1 Introduction

8.1.1 Current Interface Situation

As previously stated, the FMS End-State system is replacing four legacy, stovepipe systems. Figure 8-1, which depicts the current interface situation. Because FM currently consists of four stovepipe systems that must share data, each system considers their peers to be external systems, and must have interfaces with them. These interfaces involve exporting and importing flat files that completely overwrite the previous export/import cycle. In other words, instead of passing on to the system downstream changes or deltas, the upstream system passes a whole file. It is left to the downstream system to find what, if anything has changed.

[image: image101.wmf]FMS DATA SERVICES

RDBMS

Stored

Procedures

Lookup

Tables

FMS Data

Application

Meta Data

Figure 8‑1 Today's Interface Situation

This picture is further complicated by the fact that systems external to FM interact with one or more FM systems depending on the data needed, as well as the data’s place in the document development cycle (see Figure 1-1 for the document development cycles). Any external system that requires similar data from multiple FM systems must establish interface agreements with all FM systems involved. Additionally, the likelihood of multiple FM systems agreeing with each other is remote because of:

· Different processing cycles – FM products are developed serially over a period of months, so pulling information from RDS and TAADS at the same time will produce different results because they are essentially working on different versions or lock points of the document(s).

· Different storage formats and attributes – the FM legacy systems each have their own database schemas and consequently store information differently. Data must be transformed as it moves from legacy system to system, frequently losing fidelity in the process.

· Inconsistent use of lookup tables – each of the four systems uses lookup tables that have common meaning across all four legacy systems but different representations of those meanings. Therefore, extracts from those systems will not be the same. External systems depending upon this data have to know how each legacy system represents those lookup table values to properly translate the data. This is aggravated when one or more of those legacy systems add additional values to the lookup tables that are not common in meaning across all four legacy systems.

8.1.2 FMS End-State Cleans Up the Interface Picture

FMS End-State simplifies the interface picture by addressing all of the issues presented by the current legacy infrastructure (see Figure 7-2). First, all of the internal interfaces are eliminated by integrating all four functional areas into a single system. This improvement alone improves the quality of the FM products significantly. Functional area integration solves all of the data inconsistency and synchronization problems since its default state is consistent and synchronized.

In addition, as changes are made to subordinate foundational data, the FMS system can instantly analyze which dependant FMS products are affected, and assist the maintainer in synchronizing these products. For instance, a change has been made to an existing requirements document by adding an additional asset. Because FMS is based on an integrated datastore, the system can identify all authorization documents that are based on this requirement and notify the authorization documenters. FMS can also enable the authorization documenters to automatically “accept” the document change requirements into their managed product.

This represents a tremendous operational advantage to FM over today’s environment by simplifying the management of required changes throughout the process, and enabling rapid change propagation into all FM managed products. This capability will also enable FM to analyze new business process models for making rapid, fully-informed force development decisions and provide all necessary documentation to support those decisions to the Army community in short order.

Versioning or multiple lock points are fully supported in FMS. Human users and external systems can know the status of releasable versions (versions the document authors have released) and select the latest working, the latest approved, or even a previously released version if needed. They now have the visibility needed to select the required information and be sure that they have gotten the FMS answer versus the RDS, TAADS or SAMAS answer (all of which will differ in today’s environment).

Figure 8‑2 FMS End-State Interfaces[image: image102.png]
8.2 Interface Options

FMS End-State will provide the architecture to update today’s aging interfaces. FMS will support customizable interfaces that communicate via XML – the Internet/eBusiness standard for data exchange today. Today’s interfaces are flat files with no contextual information. They provide no metadata information about their data content. XML files pass not only the data, but also metadata (data about the data), which describes how the data elements relate to each other (schema), their attributes, formatting information, etc.

XML records are order and position independent. What does that mean? Positional and comma delimited formats are packaged in a pre-defined order that requires consensus, or the interface will be broken. This makes the delimited formats very fragile. None of the systems can change an interface in any way until all the other interdependent systems make the same change, and they implement the change at the same time.

Position based formats are even more fragile because not only is the order pre-defined and absolute, but so is the number of spaces or bytes representing each data element (see Figure 7-3 for examples of comma delimited and positional formats). XML files, because they pass metadata with the data, do not have to rely on the primitive methods of positional or comma delimited transaction types to distinguish between data elements and records. Instead, XML files “tag” each data element and include with the data file the metadata explaining how to parse the data elements and records, the meaning of each data element and its associated attributes.

[image: image88.png]
Figure 8‑3 Positional and Comma Delimited Transaction Formats

Using XML files, order is irrelevant. The interface formats can easily be extended to include new data elements without affecting the systems that do not need those elements (positional and comma-delimited based schemes can be very sensitive to the addition of new data elements at the end of the record – often breaking the interface). Additionally, XML parsers do not have to be built, as they are part of the development environment. The developer only has to provide a data map so that the parser knows where to put the desired data elements.

Because of the benefits described above, much of industry is now moving to XML based interfaces. DoD is also moving in that direction, and XML is an important part of the Army Knowledge Online (AKO) vision. Installing the mechanism for XML transactions along with other dependent systems is prudent and in keeping with the Army’s mandate to build web-enabled systems.

8.2.1 Interface Format Options

Figure 8-4 depicts all the interface formats FMS End-State will support. XML has already been discussed, as have positional and comma delimited formats. Note that XML is in both the “Relational” and “Flat” columns, because XML-based technology is flexible enough to do both. The other non-Report formats include Oracle-to-Oracle and Extract Transfer Load (ETL) tools.

[image: image89.png]
Figure 8‑4 Interface Format Options Available to FMS End-State

Oracle-to-Oracle interfaces are an option open to trusted systems generally on the same side of a firewall (there are exceptions to the firewall rule). The interface is handled by Oracle according to mapping and frequency specifications programmed into both databases by the developers. These interfaces can either be push (the sending system pushes its data into the receiving system’s database), pull (the receiving database extracts the information it needs from the source system), or a combination of the two. To implement this approach the development teams of both systems have to work very closely together and expose their systems to each other (which is why it is only available to trusted systems). Additionally, the interface is vulnerable to any underlying database changes to one or both systems. This means that neither system can modify shared aspects of its database schema without coordinating the change with the other team. However, the advantage of this approach is the very tight integration of the two systems, with better synchronization of information across the two.

ETL tools allow for a similar integration across dissimilar databases from different vendors such as Oracle, Sybase, or DB2. ETL tools allow developers to map data elements in the source database to data elements in the receiving database, and automate the exchange of information based on that mapping. Like the Oracle-to-Oracle approach, the ETL approach requires access to the source system’s database and a detailed knowledge of its structure. The advantage of the ETL tool, besides allowing data exchange between dissimilar databases, is that it forms a layer between the receiving system’s application and the source system’s database. If the source system’s database changes, the ETL tool’s mapping is likewise updated, but the application remains unchanged (unless the source system dropped a needed data element).

The “Reports” section is a special type of interface usually operated by end-users as opposed to system-to-system. Frequently, the reports feature of a system is used by end-users to move data from the source system into MS Office tools, such as MS Excel, to do further analysis. Most commercially available reporting tools support the formats listed in Figure 7-5 and the MS Office suite of tools can import any of those formats.

FMS End-State will support all of the above format specifications with the possible exception of ETL (ETL tools are maintenance intensive (i.e., expensive to maintain) – SRA will make a recommendation on their use as part of our interface analysis). The traditional formats in use today with external systems will be supported at Initial Operating Capability (IOC) deployment, as will the Report formats. The other formats will come on line in coordination with dependent systems and be allocated to an FMS system update release.

8.2.2 Interface Access Options

In addition to format upgrades, FMS End-State will bring improvements to the interface access process. As previously explained, today’s external systems have to go several places to get the information they need, if they need it from more than one legacy system and each system has its own access and exchange processes. In FMS End-State it will be “one-stop shopping” with two options: FTP (file transport protocol) or Web Services and XML (see Figure 8-5).

The FTP mechanism will be based on a FMS interface directory structure established within FMS’ directory space within the Army Portal. Users or systems can logon to the Army Portal and go to their directory to pick up their interface files. FMS will put new files into those directories based upon shared formats and frequencies (IOC will start with the formats and frequencies in place today). Likewise, systems that provide data can push their data to FMS by placing their files into their directories and the FMS Interface Service will poll that directory to pick up its updates as they become available.

While the consolidation of the transaction files in one place with one access scheme is a big improvement over today’s scenario, an even more powerful tool will be made available using Web Services and XML. The benefits of XML have already been explained, so the focus here will be Web Services.

Web Services are browser-based tools that allow the users to specify what information they want to extract from FMS and how often. For example, if Forces Command (FORSCOM) users wanted to download the authorization documents for the last two lock points, they could specify what elements of those documents they wanted and how often they wanted to get them (such as every time a new lock point is established). Meanwhile, Special Operations Command (SOCOM) could set different parameters for their interface.

Web Services provide an excellent mechanism for allowing the external interfaces to be tailored within the limits proscribed by the Memorandums of Agreement (MOA) between FM and the external organization without impacting the FMS application. Furthermore, they form a layer between the external interface and the underlying datastore, protecting the datastore from unauthorized access and any direct manipulation. Web Services would ensure that users can only access authorized data, and that they can download all or part of the authorized data successfully. Web Services accesses the system via the Army Portal, as in the FTP directory approach.

Finally, for G3 systems behind the AKO firewall, such as the Army Flow Model (AFM), a direct Oracle-to-Oracle interface can be established, if warranted. As previously stated, this requires very close coordination between the two teams and a high degree of inter-system trust.

[image: image90.png]
Figure 8‑5 FMS Interface Services

The final piece of the interface technical approach is the use of staging tables (known as the External File Library – see Section 4, Architectural Premises). In Figure 8-6, staging tables sit between the core database and the Interface Services component of FMS. While the integration of the four legacy FMS systems into one solves the data translation problems internal to FMS, they still exist between FMS and external systems. Whether data is going out or coming in, it must be converted to the type of data the receiving system can understand and ingest. For example, one system may name an infantry company “A/2-60 Inf” while another “A-2/60 Inf.” Information systems are notoriously picky about their data – they would interpret these as two different units.

[image: image91.emf]FMS Integrated Datastore

FMS Database

Staging Tables

(External File Library)

FMS uses Staging Tables (External File Library —

see Section 4) as a temporary holding place or

“scratch pad.” These tables are modeled after the

external system’s schema and then used by the

Transformation Services to either create

transactions (outputs) or convert transactions into

FMS data (inputs).

FTP Handler

Web Services

MACOM

1

LOGSA

DIHMRS

Interface Services

Component of FMS

Org’s

MACOM

2

Entities

Entity A

Entity B

Entity C

Entity D

NIPRNET/SIPRNET

Interface

Transactions

Trans-

formation

Services

Figure 8‑6 Staging Tables

The staging tables are then used as “scratch pads” or temporary holding areas by the FMS Interface Services and Transformation Services to deal with the idiosyncrasies based on the interface specifications spelled out in MOAs. The staging tables are structured to match the external system’s schema. Transformation Services sits between the database and the staging tables, and converts FMS data. Transformation Services then places the data in the appropriate output staging tables for outgoing transactions. Lastly, Transformation Services converts the data in the input staging tables into FMS data, making the appropriate FMS database updates.

The Interface Services Component picks up outbound data from the staging tables and either converts them to FTP files and places them in the appropriate FTP directory, or makes them available to the appropriate Web Service for further refinement according to the users’ tuning parameters before converting into XML for delivery. Likewise, the Interface Services Component parses inbound data files into transactions, and places the transactions into the appropriate input staging tables. From the staging tables, the Transformation Services picks up the data files for final conversion into FMS data updates.

Another important feature of the combination of staging tables and the Transformation Services is the ability to identify the deltas or changes from the previous import and the current one. Each new baseline of external data will be evaluated against the previous one and differences noted. These difference records will then need to be loaded into the appropriate Data Libraries taking advantage of surrogate primary key structures and association table structures contained in the FMS database.

This process can then enable the combined cascading effect of change analysis and automated/human controlled update of appropriate association records up the workflow “food chain”. An example of this would be an existing BOIP-FD (Basis of Issue Plan – Feeder Data) data set being updated from the Logistics Integrated Database (LIDB). This change would be captured as a difference record and a new BOIP-FD record (Same ID/New Sequence Number) would be generated. This would trigger a notice to the supporting BOIP that the underlying BOIP-FD resource data has been updated (Same ID/New Sequence Number) and ask for update to the association record. This in turn would update Modernization Option encompassing that BOIP along its mod path. This in turn would update the Requirement Documents using the previous version of that BOIP or Modernization Option. Finally, this would update the Authorization Documents established against those changed Requirements Documents.

At each step of this process, both automation and human intervention must be supported to maintain a simple and effective way to spread the release of data changes within the FMS Local Administrators control.

8.3 Interface Development Approach

While SRA team’s approach to developing the interface handling components and formats have now been described, the details of each interface have not. SRA will append to the design document, as it evolves over three releases (one for each development increment), the MOAs describing the interface specifications and the roles and responsibilities of each party. The steps involved in developing the interfaces themselves are depicted in Figure 8-7.

[image: image92.png]
Figure 8‑7 Interface Development

The first step is clearly to identify existing interfaces and their formats. That effort is well underway. Table 8-1 lists the types of details we are collecting with respect to each interface. These go into SRA’s interface database (Appendix C.1 contains reports from that database).

[image: image93.png]
Table 8‑1 Interface Requiquirement Identification Considerations
Once existing interfaces have been identified and understood, SRA will determine if any of the scripts or modules currently used to parse the files can be re-used. In all likelihood, the code will not be re-usable, because the FMS database schema is significantly different from all four legacy systems. The algorithms used by the code, however may be re-usable. The scripts will either be modified or developed to maintain the current interface requirements.

High value interfaces (such as those that currently require manual data entry) can be prioritized for modernization to take advantage of Web-Services and XML features. In the interests of modernization, FM and the external organizations will have to develop MOAs that lay out interface requirements in terms of specifications and frequency of exchange, and also coordinate modernization timelines. The modernization will be a gradual process. FMS End-State provides the infrastructure to take advantage of modernization without having to impact the FM functional application itself. The FMS functional application is completely divorced of interface worries and thereby protected from changes to the interfaces.

8.4 External Interface Summary

In summary, FMS End-State will accomplish the following with respect to external interfaces:

· Eliminate all the interfaces between the four legacy systems

· Integrate all FMS data into one datastore and thereby increase the quality; i.e., consistency of the data external systems gets from FMS

· Provide consolidated interface access via the Army Portal

· Support today’s FTP based interfaces in a consolidated, consistent fashion

· Provide the infrastructure to modernize interfaces to use Web Services and XML based interface files

SRA has already started working with the Government FMS Team to start collecting legacy interface data requirements, POCs, etc. (see Appendix C). Additionally, the URP has chartered an interface tiger team to continue working the interface requirements.

Interface details will be appended to this document in Appendix C. They are:

· Appendix C.1: Interface Coordination Tables (output of SRA’s Interface Database)

· Appendix C.2: Interface Memorandums of Agreement (MOA)

9.0 Hardware Architecture

9.1 Hardware Architectural Premises

In developing the hardware architecture SRA needs to address the four “ilities” of Availability, Reliability, Scalability, and Maintainability, along with Performance. These factors define the operating requirements (versus the functional requirements used to develop the software application). Table 9-1 lays out the “ilities” and our approach to addressing them. While the requirements are still being defined, SRA is taking an approach that insures all these factors are addressed in a cost effective fashion.

	The Four “ilities”

	“ilities”
	Description
	FMS Approach

	Availability
	Typically defined as a percentage. For example "system must be available 99% of the time including scheduled downtime." This means that in a year the system cannot be down more than 3.65 days (counting weekends and holidays) for any reason.
	· Use redundant hardware.

· Design application to take advantage of redundant hardware.

· Take advantage of the Chief Technology Office (CTO) disaster recovery planning and infrastructure.

	Reliability
	How often does the system break down? Terms such a “mean time between failure” are typically used to define this metric. Since this metric directly affects availability and maintainability it is important to purchase hardware that has a reputation for reliability.
	· FMS will use Sun hardware for the Oracle servers. Sun is an industry leader in providing reliable Unix-based operating platforms.

· Compaq or Dell NT Servers – FMS will follow the CTO’s recommendation. Both manufacturers are industry leaders with high reliability scores.

	Scalability
	A measure of a system’s ability to grow with demand. This is a performance measure.
	· Develop a distributed SW architecture to take advantage of a multi-server environment.

· Utilize a multi-server approach to scaling the system’s performance.

	Maintainability
	How much does it cost to keep the system running?
	· Take advantage of the CTO’s data processing center to keep admin and maintenance costs down by leveraging these costs across other CTO systems (non-FMS).

· Use hardware platforms already supported by the CTO admin team for efficiencies in maintenance agreements, training, etc.

Table 9‑1 System "ilities"

It is important to understand that addressing the “ilities,” particularly the first three (availability, reliability, and scalability) can be very expensive. The architect and the customer have to work together to balance the cost against the risks. For a system where human life hangs in the balance, the cost becomes secondary to the impact of system failure. Industry standards for systems that must meet high availability requirements (such as financial systems, power systems, etc.) are frequently at the 99.9999% (6-sigma) level or higher. To put this in perspective, a server with an availability metric of 99% would only have 3.65 down days a year (counting weekends, holidays, scheduled maintenance, etc.). A server with 99.9999% availability would only have 31.5 down seconds a year. Each additional “9” in the availability metric adds significantly to the cost of the system.

From an availability point of view, FM wants to be sure that disaster recovery procedures are available so that if another 9/11 incident occurs, they Army will know their data is secure, and that they can get access to their backup systems as soon as they locate personnel to alternate workspaces. SRA’s FMS Development Team is working with the CTO to leverage their disaster recovery data center and procedures to meet this requirement.

FM is also concerned that the system they deploy is easy to maintain and cost effective. Table 9-1 talks to how SRA’s FMS Development Team will ensure those goals are met. As the specifics are developed in coordination with the CTO, this section will be updated to include them (or reference the appropriate documents with those details, such as the CTO/FM MOA).

The other critical metric is Performance. Performance is related to Scalability in that scalability requires performance to remain constant (within established parameters) as demand increases. SRA is developing the performance requirements as part of the system technical requirements and will address those requirements through a combination of software and hardware architecture decisions. Figure 9-1 is an illustration of a probable approach to achieving performance, availability, and scalability by taking advantage of Windows 2000’s advances in Server Clustering. The FMS server farm will use Network Load Balancing (NLB), which is one of the clustering technologies available in Windows 2000 Advanced Server. It provides high availability and high scalability to IP-based applications, such as Web Services. NLB distributes incoming IP traffic across a cluster of multiple servers that provide TCP/IP services. It utilizes a common virtual IP address for the entire cluster and transparently partitions client requests across the multiple servers in the cluster.

[image: image94.png]
Figure 9‑1 Round Robin Network Load Balancing

9.2 Proposed Processing Hardware Architecture

Figure 8-3 depicts the notional FMS hardware architecture. It is divided into three layers, two of which SRA will specify and the third, the client layer, is a constraint in that it has been specified as G3 standard Windows 2000 based clients (Pentium III or IV processors at 700Mhz or better, 128MB RAM or better, 10GB hard drives or better with a minimum of TBD GB set aside for FMS). The other two layers are the Datastore layer consisting of a Sun server with one or more disk arrays and n number of Windows 2000 Servers running the middle tier.

The Datastore tier will host the following FMS components:

· FMS Integrated Database

· Transformation Services (for external interface support)

· External Library File or Staging Tables (for external interface support)

The middle tier will host the following software services:

· Rules Services

· Site Services

· System Rules Manager Services

· Interface Services

· Report Server

· NLP Query Engine

The clients will host the FMS application.

The CTO will provide the networking and firewall services and hardware:

[image: image103.png]
Figure 9‑2 Notional Hardware Architecture

The hardware specifications will be defined in detail during the Increment 2 development phase, after performance modeling is complete. This document will then be updated with those details or reference the appropriate document.

10.0 Network Constraints

The network FMS will ride is a system constraint in that SRA must design the FMS system to be compatible with the existing network topology; i.e., the NIPRNET/SIPRNET as the WAN connecting the various FM LANs. The essential topology is depicted in Figure 10-1. As highlighted in the graphic, the WAN is typically the bottleneck operating at 1-10% the speed of the LANs.

[image: image104.png]
Figure 10‑1 IP WAN Based Network

SRA’s challenge in developing the software architecture is to take advantage of the NIPRNET/SIPRNET without the user seeing a performance penalty payment. SRA has fulfilled the challenge in a number of ways that have already been detailed in Section 5, the Software/System Architecture, the highlights of which are:

· Use of a thick client that uses the local PC’s processing power to display and manipulate data windows and perform local data operations

· Pass only data via the WAN – typically web-based applications pass data and formatting / display information

· Use of Microsoft’s .Net infrastructure which has been developed explicitly to efficiently manage distributed applications over an IP-based WAN

In addition, we will work with the CTO to characterize and model WAN performance. SRA can use this information to further refine the software architecture to mitigate issues discovered. This information can also be used by the CTO to justify and quantify WAN upgrade requirements, if required.

There are three ways to mitigate the risk associated with the existing networks. First, as mentioned above, test network performance in a real word environment once FMS is mature enough to simulate the amount of bandwidth FMS will need. Second, categorize the type of network traffic FMS will produce to avoid known long wait times at the client. By breaking the traffic up into manageable bursts of data requested by the client on independent threads, the FMS client can produce data on demand from pre-downloaded reserves. Third, use caching for transaction types where data does not change frequently.

11.0 System Security

FMS is built on a flexible role based security system. System security is engineered into FMS at the very core. When an operator logs onto FMS, his or her role is established on the middle tier, which dictates access to system components that are created and content that is downloaded.

In addition to the security measures built into the FMS System, FMS server communications to clients is encrypted to ensure hacking software used to sniff out user names and passwords are not an issue. FMS uses Windows 128 bit crypto to encode and de-code all traffic during a session. Additional security is supplied for FMS through the Army Knowledge On Line (AKO) hosting service in the form of a firewall and monitoring. Although additional ports are opened on an as needed basis, the AKO firewall provides an extensive security enclave for FMS to reside. See Appendix B for a detailed discussion on security.

FMS uses Secure Socket Layer (SSL) to ensure the following:

· Server Authentication

· Ensures that users are communicating with the “real” FMS middle tier

· Integrity

· Detects any attempt to modify data in transit via a check-value

· Confidentiality

· Protects data in transit against electronic eavesdroppers via encryption

Appendix A
Acronyms and Abbreviations

AFM

Army Flow Model

AIS

Automated Information System

AKO

Army Knowledge On-line

ASGMT

Assignment

AUT

Application under Test

BLOB

Binary Large Object

BOI

Basis of Issue

BOIP

Basis of Issue Plan

BOIP-FD

BOIP Feeder Data

BND

Boundary

CCB

Configuration Control Board

CLR

Common Language Runtime

CM

Configuration Management

CMP

Configuration Management Plan

COBOL

Common Oriented-Business Language

COTS

Commercial Off-the-shelf

CR

Change Request

CTO

Chief Technology Office

CUT

Code and Unit Test

DB

Database

DBA

Database Administrator

DIS

Display

DOD

Department of Defense

DSPM

Development Standards and Procedures Manual

ERR

Error

ETL

Extract Transfer Load

FAR

Federal Acquisition Requisition

FM

Force Management

FMS

Force Management System

FOC

Final Operating Capability

FTP

File Transport Protocol

GFE

Government Furnished Equipment

GFI

Government Furnished Information

GUI

Graphical User Interface

ICP

Incremental Change Package

IDE

Integrated Development Environment

IEEE

Institute of Electrical and Electronic Engineers

INP

Inspection

IOC

Initial Operating Capability

I-SAMAS

Interim-SAMAS

JIT

Just In Time Compiler

LAN

Local Area Network

LDAP

Lightweight Directory Access Protocol

LIDB

Logistics Integrated Database

MDI

Multiple Document Interface

MOA

Memorandum of Agreement

MS

Microsoft

MSIL

Microsoft Intermediate Language

NIPRNET

Non-classified Internet Protocol Network

NLB

Network Load Balancing

NOM

Nominal

OBS

Observation

PR

Problem Report

PVCS

Professional Version Control Software

QA

Quality Assurance

ROC

Resource Operating Command

RPT

Report

RRR

Release Readiness Review

RSP

Response

RTM

Requirements Traceability Matrix

SA

System Administrator

SAMAS

Structure and Manpower Allocation System

SDF

Software Development Folder

SIPRNET

Secret Internet Protocol Network

SIT

System Integration Test

SOAP

Simple Object Access Protocol

SOP

Standard Operating Procedure

SQL

Structured Query Language

SRC

Standard Requirements Code

SRS

Software Requirements Specification

ST

System Test

SUT

System under Test

SWIT

Software Integration Test

TEMP

Test and Evaluation Management Plan

TBD

To Be Determined

TC

Test Case

TCP/IP

Telecommunications Protocol/Internet Protocol

TRR

Test Readiness Review

T&E

Test and Evaluation

UI

User Interface

UAT

User Acceptance Test

UDDI

Universal Description, Discovery, and Integration specifications

URI

Uniform Resource Identifiers

USAFM

U.S Army Force Management System

VBA

Visual Basic for Applications

VSA

Visual Studio for Applications

WAN

Wide Area Network

WSDL

Web Services Description Language

� EMBED Word.Document.8 \s ���

BOI_ORG_ELEMENT

BOI_ASSOC_CLASS

BOI_CLASS

� EMBED Visio.Drawing.6 ���

FMS CLIENT - UI SERVICES

NET Request

HTTP Query

System

Log

System

Registry

MDI

Rule Engine

FMS Application

Data Manager

XML

BOM Object Layer

SRA hereby certifies that to the best of its knowledge and belief the technical data delivered herewith under government contract number GS00T99ALD0211 and task order number T0000AJM002 are completely accurate and comply with the requirements of the contract and the associated task order, when applicable, concerning such technical data.

[image: image105.emf]Flat files ftp’ed or mailed

RDS UserForce Builder User

SAMAS UserTAADS User

Flat files ftp’ed or mailed

Flat files ftp’ed or mailed

Flat files ftp’ed or mailed

Flat files ftp’ed or mailed

External

Systems

External

Systems

RDS Lock Pt n

Lock Pt 3

Lock Pt 1

Lock Pt 2

Force Bldr LP n

Lock Pt 3

Lock Pt 1

Lock Pt 2

TAADS LP n

Lock Pt 3

Lock Pt 1

Lock Pt 2

SAMAS LP n

Lock Pt 3

Lock Pt 1

Lock Pt 2

[image: image106.emf]Transport: NIPRNET/SIPRNET WAN

Access: Army Portal

RDS UserForce Builder User

SAMAS UserTAADS User

External Systems

RDS Lock Pt 2

FMS Integrated

Datastore

Lock Pt 3

Lock Pt 1

Lock Pt 2

[image: image107.emf]FMS Middle Tier —

Application and Web

Services

Datastore

Sun Disk Array

Sun Database Server

NT Server

NT Server

NT Server

NIPRNET / SIPRNET

CTO/Army Portal

Firewall

Win 2k FMS Clients

Win 2k FMS Clients

Win 2k FMS Clients

Win 2k FMS Clients

Win 2k FMS Clients

SRA will specify hardware

details for these components

during Increment 2

development after completing

performance modeling.

The number of servers

in this layer are

notionally depicted as

three. The exact

number will be

specified after SRA

completes its

performance analysis

during the Increment 2

development phase.

Multiple disk arrays

may be specified

depending on the fail

over requirements.

_1129970893.bin

_1142263201.vsd

_1142263202

_1142263200

_1106721707.vsd

_1107156809.vsd

_1002000901.doc
[image: image1.png]

_1080031723.vsd
�

�

RDBMS�

�

FMS Data�

Stored
Procedures�

�

Application
Meta Data�

Lookup
Tables�

�

�

FMS DATA SERVICES�

